Patents
Copyright © 2004 Eric Fahlgren
Last updated 2007-09-18 11:14 PDT

Automotive Patents

Patent No.PgsTitle
GB2266923A 15 BMC A-Series EFI
2877752 2 Schaller Double Lobe Camshaft
3103104 9 Dick Shackson's Portable Gas Conditioning Apparatus
3477376 3 Missile Nose Cap
3551800 9 Test Apparatus for Analyzing the Performance Characteristics of Internal Combustion Engine Ignition Systems
3945739 14 Ball Joint
4355614 12 Electronic fuel injection control apparatus of an internal combustion
Small change in the period of a crank-angle signal which is generated at every crankshaft rotation of a predetermined angle is not faithfully reflected to a false crank-angle signal which is used by a fuel injection control device for detecting the engine's running speed. Thus, even when the actual running speed is varied, the running speed recognized by the fuel injection control device doesn't change faithfully to this variation. Therefore, the amount of fuel injected into the engine, which amount is calculated in accordance with the running speed, doesn't vibrate with the variation of the running speed, preventing the surge phenomenon from occurring.
4462369 11 Fuel injection apparatus designed for an internal-combustion engine
A fuel injection apparatus for controlling fuel injectors for internal combustion engines which injectors remain normally shut as a result of a high fuel pressure applied on either side of injector fuel nozzles. The apparatus of the present invention includes a first slide valve member which, by sliding from one extreme position to another, is able to lower the pressure below a fuel nozzle associated with a fuel injector to start a fuel injection cycle in that injector. The apparatus also includes a second slide valve member which, by sliding from one extreme position to another, is able to increase the pressure below the fuel nozzle to end the fuel injection cycle and control the duration of the fuel injection cycle as well as the flow rate of the injected fuel. The first and second slide valve members return to their initial positions after two consecutive fuel injection cycles.
4539956 12 Diesel fuel injection pump with adaptive torque balance control
An otherwise conventional fuel supply system of the type that includes an engine driven distributor type fuel injection pump operatively connected to a diesel engine is modified so as to include a normally closed solenoid actuated valve means operatively associated with the inlet passage means of the pump in a location between the transfer pump of the pump and the injection pump means of the pump; an adaptive torque balancing electronic controlled electric power source being connected to the solenoid actuated valve means, whereby the solenoid actuated valve means is operative to supplement the metering valve control of fuel flow from the transfer pump to the injection pump means whereby the fuel flow to the injection pump means and from the injection pump means to each of the respective injection nozzles for each of the cylinders is controlled as a function of engine operation and the incremental speed difference per preselected degrees of movement among the respective cylinders of the engine.
4545355 15 Closed-loop mixture controlled fuel injection system
A closed-loop mixture control system for an internal combustion engine comprises an intake air pressure sensor, an engine speed sensor, an exhaust gas sensor for detecting the concentration of a predetermined composition of exhaust emissions from said engine, said concentration varying as a function of the air-fuel ratio of a mixture supplied to the engine, a memory having a plurality of storage locations, and a data processor. The processor derives a basic quantity of fuel to be injected to the engine as a function of the detected pressure and engine speed, a mixture trimming value as a function of the detected concentration, a fuel injection trimming value dependent on the mixture trimming value, and stores the fuel injection trimming value into a memory location exclusively addressable as a function of the detected engine speed. The stored fuel injection trimming value is read as a function of the detected engine speed from the memory and summed with the basic quantity in response to which the fuel quantity to be injected to the engine is controlled.
4558672 6 Process for shutoff of fuel injection during the deceleration phases of
A process whereby fuel injection is interrupted in response to detection of a deceleration and injection is again ordered when a threshold linked to the engine speed is reached. The engine speed (N) or period of rotation (T) is measured from consecutive equal intervals or angles of rotation. A difference (.DELTA.T, .DELTA.N) is then computed between the value of the last measured speed or period and the value seen through a high-pass filter of the speed or period measured at the preceding interval. This difference (.DELTA.T, .DELTA.N) is compared with a fixed threshold (S) and if an engine deceleration condition is detected, fuel injection is again ordered when the difference (.DELTA.T, .DELTA.N) is greater than the threshold (S).
4586479 10 Electronic fuel injection control with variable injection intervals
In a fuel injection control system for an internal combustion engine, operating conditions of the engine are constantly monitored. A transient condition of the engine is detected from the monitored operating conditions. A fuel injection quantity is derived from the monitored operating conditions to effect injection at first intervals during the absence of the transient condition and at second intervals during the presence of the transient condition. Fuel injectors are activated in response to the derived fuel injection quantity.
4715340 6 Reduction of HC emissions for vapor recovery purge systems
An apparatus and a method for controlling hydrocarbon emission from an internal combustion engine having an air/fuel intake coupled to a fuel vapor recovery system. Fuel vapors are periodically purged from the fuel vapor recovery system into the air/fuel intake. The mixture of air/fuel vapor and fuel is regulated by a feedback loop response to an exhaust gas oxygen sensor to maintain a desired air/fuel ratio. At the beginning of each purge cycle, engine spark timing is temporarily retarded to reduce hydrocarbon emissions during the response time of the feedback loop.
4748959 8 Regulation of engine parameters in response to vapor recovery purge
An apparatus and a method for controlling hydrocarbon emission from an internal combustion engine having an air/fuel intake coupled to a fuel vapor recovery system. Fuel vapors are periodically purged from the fuel vapor recovery system into the air/fuel intake. The mixture of air fuel vapor and fuel inducted into the air/fuel intake is regulated by a feedback loop responsive to an exhaust gas oxygen sensor to maintain a desired air/fuel ratio. An indication of the fuel vapor concentration in the fuel vapor recovery system is provided to control various engine parameters and thereby reduce hydrocarbon emissions during the response time of the feedback loop. In one aspect of the invention, the flow rate of the purged fuel vapors is controlled to be in inverse relation to the concentration of purged fuel vapors during the response time of the feedback loop. In another aspect of the invention, the engine timing is retarded in relation to the concentration of purged fuel vapors during the response time of the feedback loop.
4792902 8 Engine ignition timing for a clutch engagement control system
A system and method for controlling the ignition timing of a spark ignition internal combustion engine in a driveline that includes a multiple speed ratio transmission, at least one of whose operating speed ratios depends on the engaged or disengaged state of a clutch, the rotating inertia of the engine, equivalent vehicle inertia, a spring associated with the stiffness of the axle, inherent structural damping, and a spark advance controller-filter, whose output advances and retards the spark timing of the engine in accordance with the magnitude of engine speed and transmission output speed according to a control algorithm, which improves speed ratio control during shifts and minimizes the underdamped oscillations that result after the clutch is fully engaged.
4827888 7 Nozzle
An injection nozzle utilizing nitrous oxide to aid in the introduction and atomization of fuel into a combustion chamber. The present invention comprises a Y shaped nozzle having a pair of input ports and a single output port. One input port is utilized to introduce nitrous oxide into a hollow sleeve of the nozzle and ultimately exiting at the output port. The second input port introduces fuel to the nozzle. A fuel line coupled to the second input port extends the length of the hollow nozzle, terminating at the output port extends the length of the hollow nozzle, terminating at the output port. The nitrous oxide is introduced at high pressure, approximately 500-1000 PSI. The fuel is introduced at approximately 3-12 PSI. As the nitrous oxide exits past the end of the fuel line, it creates a vacuum which aids in drawing the fuel from the line. In addition, the high pressure and vaporization of the nitrous oxide atomizes the fuel so that it is fully dispersed and once within the combustion chamber may be more efficiently burned.
4853720 10 Condition adaptive-type control method for internal combustion engines
To perform the proper control conforming to the intent of a driver of an automotive vehicle under any condition which is encountered by the vehicle, optimum control methods are preliminarily classified in accordance with categories relating to conditions of the vehicle and categories relating to intents of the driver and the classified optimum control methods are stored in a memory, thereby selecting one of the control methods corresponding to the combination of the categories to which the vehicle condition and the driver's intent detected during the running of the vehicle belong.
4901701 15 Two-cycle engine with electronic fuel injection
A fuel injection system for a two-stroke cycle engine comprising an air manifold; a throttle valve; a fuel injector; a fuel supply system including a fuel pump; a battery voltage sensor; an air temperature sensor; an engine speed sensor; a timing sensor; a barometric pressure sensor; a throttle position sensor; a first data processor for receiving and processing sensing signals for determining fuel injector duration and timing and fuel pump operating speed; a first data processor temperature sensor for sensing the relative temperature of certain electronic components in the first data processor; a heater operatively associated with the first data processor electronic components for selectively heating the electronic components; and a second data processor operable independently of the first data processor for receiving an electronic component temperature sensing signal and for generating a control signal to the heater responsive thereto for heating the components when the temperature thereof is below a predetermined minimum value.
4922874 10 Automobile electronic control modules communicating by pulse width
A distributed processing system in an automotive environment achieves enhanced noise immunity and reduces the processing burden and background loop time of the master controller by providing for communication of signals between a master controller and a slave controller by pulse width modulated communication signals. In a preferred embodiment, the communicated signal is a spark advance which is transmitted to an ignition module for implementing spark events in an internal combustion engine. The spark advance pulse width is a linearly decreasing function of spark advance value since increased spark advance is associated with an increase in engine speed. The spark advance is encoded into a pulse width signal according to a method which simplifies decoding of the spark advance information in the ignition module.
4967712 14 Two-cycle engine with electronic fuel injection
A fuel injection system for a two-stroke cycle engine comprising an air manifold; a throttle valve; a fuel injector; a fuel supply system including a fuel pump; a battery voltage sensor; an air temperature sensor; an engine speed sensor; a timing sensor; a barometric pressure sensor; a throttle position sensor; a first data processor for receiving and processing sensing signals for determining fuel injector duration and timing and fuel pump operating speed; a first data processor temperature sensor for sensing the relative temperature of certain electronic components in the first data processor; a heater operatively associated with the first data processor electronic components for selectivley heating the electronic components; and a second data processor operable independently of the first data processor for receiving an electronic component temperature sensing signal and for generating a control signal to the heate responsive thereto for heating the components when the temperature thereof is below a predetermined minimum value.
5001645 30 Adaptive control system for an engine
An adaptive control system is provided for an internal combustion engine having at least two control inputs which affect an engine output. The system involves establishing a first base value for a first control input as a function of engine operating conditions and establishing a second base value for a second control input as a function of engine operating conditions. Corrections are applied in accordance with a predetermined control strategy to the first base value and the second base value to obtain a first corrected value for the first control input and a second corrected value for the second control input. A particular control input is periodically perturbed, and the engine output is monitored. The actual slope or differential of the engine output with respect to the particular control input is determined. The control strategy is predetermined to cause the actual slope to correspond to a desired value and to allow corrections to be applied to the first and second base values after corrections have become stabilized.
5036818 4 Apparatus for regulating the inflow of fuel into the intake duct of an
An apparatus is provided for regulating the inflow of fuel into an intake duct (19) of a controlled-ignition internal combustion engine through the utilization of a fuel injection valve (11) having an outlet (21) opening into the intake duct (19) downstream of a multiple position speed regulator valve (30). Conventional control mechanisms (29, 40) energize the fuel injection valve (11) as a function of the operating parameters of an associated engine. A fuel container (13) has an outlet connected by a pipe (12) to an inlet of the fuel injection valve (11), and a float valve mechanism (17) maintains a substantial uniform level of fuel (14) in the fuel container (13) which corresponds to the position of the fuel injection valve outlet (21) whereby the amount of fuel introduced into the intake duct (19) is proportional to the velocity of the air flowing therethrough and substantially absent pressurization from the fuel (14) within the fuel container (13).
5038740 11 System for controlling fuel injection quantity at start of two-cycle
Disclosed is a system for controlling the fuel injection quantity at the start of a two-cycle engine, in which a predetermined amount of a fuel is preliminarily injected when a key switch of the engine is turned on, the revolution speed of the engine is smaller than a reference value and the opening degree of a throttle valve takes a predetermined change pattern.
5040507 6 Method and device for variable idle speed control of an internal
A method and device for providing a time-varying minimum engine speed setting are disclosed. A first embodiment of the device includes programming within an electronic engine control module for variably supplying fuel to an engine via variable activation periods for the fuel injectors of a fuel injected engine. In another embodiment a rotating cam provides a positionally time-varying mechanism stop against which the throttle linkage is positioned when released by the operator. In another embodiment of the invention, a solenoid provides a minimum engine speed setting which varies between two different positions. The two different positions are produced by a solenoid, which is activated and deactivated at random to produce a pseudo-random variation in minimum engine speed. Pulse-width activation of the solenoid provides variable positioning of the solenoid actuator between the two end stop positions of the solenoid actuator.
5042444 13 Device and method for altering the acoustic signature of an internal
An apparatus and method for altering the acoustic signature of an internal combustion engine is disclosed. Several techniques for altering the acoustic signature of an engine are shown, including time-varying, disabling or cutout of individual cylinders of an engine in a random fashion in order to reduce the periodic characteristics of the exhaust noise of the engine. Alternate embodiments include offsetting crank pins to transform an even firing engine into an uneven firing engine, inhibiting the fueling of individual cylinders, and inhibiting the ignition signals provided to individual cylinders. A combination of the above techniques may also be implemented in order to disperse the exhaust noise energy present over a wide frequency range, making acoustic detection of the exhaust signature difficult. Cylinder cutout schemes are implemented over a single or multiple engine cycle to disperse exhaust noise pulses over time and randomize measurable spectral noise composition.
5043659 26 Non-intrusive tachometer for spark ignition autos
An non-intrusive tachometer for measuring engine RPM includes a hand-held probe having an antenna for sensing radio frequency electromagnetic signals radiated from an operative spark ignition engine. The probe includes means for providing a pulse signal indicative of plug firing events to signal processing means which executes a statistical algorithm to determine the time between spark plug firings and engine RPM. A visual display displays engine RPM. Automatic gain contol means provides the pulse signal with a relatively constant amplitude by compensating for the inherently wide variation in amplitude of the electromagnetic signals among different automobile ignition systems. The signal processing means and display are located separate from the probe in an emissions testing system, or the signal processing means and display are integrated within the probe.
5121324 15 Motor vehicle magagement and control system including solenoid actuated
An electronic integrated engine and vehicle management and control system includes an electronic vehicle control module and a fuel injection control module, in communication with each other, which together control the total vehicle and engine operation functions of a heavy duty vehicle. A novel fuel injection timing device is utilized with the control module to allow precise and sophisticated control of engine timing based on a number of engine and vehicle operating parameters as determined by the control modules. Functions such as engine speed control, vehicle road speed control, engine protection shutdown, fuel economy, braking control and diagnostics are performed by the system.
5137000 11 Device and method for decreasing delays in fuel injected internal
An engine control device for electronically controlling fuel injection of an engine is disclosed. The engine control device includes algorithms for instantaneously calculating fueling requirements in accordance with sensory inputs corresponding to engine operating conditions and throttle position. The fueling requirements are instantaneously reflected as modifications of the duration of fueling signals supplied to the fuel injectors, so that instantaneous fueling changes are effected. Fuel is conserved, and engine responsiveness improved in the current or presently occurring fuel injection cycle as a result of the immediate responsiveness of the engine control device operation.
5157613 27 Adaptive control system for an engine
An adaptive control system is provided for an internal combustion engine having at least two control inputs which affect an engine output. The system involves establishing a first base value for a first control input as a function of engine operating conditions and establishing a second base value for a second control input as a function of engine operating conditions. Corrections are applied in accordance with a predetermined control strategy to the first base value and the second base value to obtain a first corrected value for the first control input and a second corrected value for the second control input. A particular control input is periodically perturbed, and the engine output is monitored. The actual slope or differential of the engine output with respect to the particular control input is determined. The control strategy is predetermined to cause the actual slope to correspond to a desired value and to allow corrections to be applied to the first and second base values after corrections have become stabilized.
5159914 13 Dynamic fuel control
Air/fuel ratio of an internal combustion engine is controlled by predicting the air charge to enter the engine two cylinder events into the future and then determining the amount of fuel to be injected to achieve a desired air/fuel ratio. A first fuel pulse is injected, and if needed, a second fuel pulse is injected to achieve the needed amount of fuel for the desired air/fuel ratio.
5201296 24 Control system for an internal combustion engine
A control system for an internal combustion engine having a plurality of cylinders and a rotatable crankshaft. Each cylinder has an electronically actuatable intake valve, exhaust valve and fuel injector. The control system includes a sensor which monitors the rotation of the crankshaft and responsively produces a crankshaft pulsetrain. A computer produces operator parameter signals. The operator parameter signals including one of a plurality of operating modes of the engine. A first microprocessor receives the crankshaft pulsetrain, responsively determines the speed of the engine and produces a signal representative of the determined engine speed. A second microprocessor receives the operator parameter signals and the engine speed signal, responsively determines valve and injection events for each cylinder to responsively achieve the one engine operating mode. The second microprocessor produces signals representative of the determined valve and injection events.
5268842 19 Electronic control of engine fuel injection based on engine duty cycle
A control system for controlling fueling and/or timing of a fuel injector in an internal combustion engine. Fuel injection is controlled based upon the recent operating history of the engine. In particular, the difference between the instantaneous speed and the average speed over a previous predetermined period are compared and the difference is utilized in determining a control variable which in turn can be used for selecting fueling and/or timing values. The difference between the instantaneous fueling and the average fueling over a predetermined period can also be used in selecting the control variable. The fuel injector fueling and/or timing is determined utilizing fueling and/or timing values from at least two maps, with the control variable determining the proportions of the timing/fueling valves to be utilized in determining commanded timing/fueling. The control variable may also be set to a fixed value under certain conditions such as during operation on a governor, or where the operator selects an override function.
5269275 12 Pulse width modulated controller for nitrous oxide and fuel delivery
A pulse width modulated controller for N.sub.2 O and enrichment fuel delivery includes a system control logic section which processes signals from sensors for throttle position, engine speed and a number of other user-selectable parameters and a driver section controls electrically operated injectors or solenoid valves. The driver section allows the injectors to open only when all of the parameters sensed in the control section are met. Moreover, the driver section activates injectors according to a pulse generated by a pulse width modulation section which determines how long the injectors will remain activated. The pulse width modulation section receives signals based on the present throttle position and engine speed and adjusts these values according to values for N.sub.2 O and enrichment fuel based on engine speed and throttle position set by the user in a tuning section and thereby continuously provides the driver section with a pulse having a width proportional to the proper amount of N.sub.2 O and enrichment fuel which should be delivered at any given time. In addition, the tuning section is also user-settable to a maximum ignition timing adjustment and provides a signal proportional to ignition timing retard to an ignition control section for automatically adjusting ignition timing according to the amount of N.sub.2 O and enrichment fuel being delivered at any given moment.
5323748 9 Adaptive dilution control system for increasing engine efficiencies and
An adaptive dilution mixture control system for internal combustion engines including an apparatus for measuring a combustion force within a combustion chamber communicating with an apparatus for calculating the real-time work output of the engine from the measured combustion force, and an apparatus for controlling the variable dilution of the fuel-air mixture delivered to the combustion chamber to achieve a desired work output, the controlling apparatus responsive to the real-time work output. The apparatus for controlling the variable fuel-air mixture dilution includes a compensator for comparing the real-time work output and other engine parameters to an adaptive optimizing control model, and calculating the desired work output. Also included is a fuel injection system, and an exhaust recirculation valve to vary the dilution of the fuel-air mixture to achieve the desired work output. The adaptive optimizing control model is adapted to change over time based on a change in engine conditions.
5343970 27 Hybrid electric vehicle
An improved hybrid electric vehicle includes an internal combustion engine and an electric motor. Both the motor and the engine provide torque to drive the vehicle directly through a controllable torque transfer unit. Typically at low speeds or in traffic, the electric motor alone drives the vehicle, using power stored in batteries; under acceleration and during hill climbing both the engine and the motor provide torque to drive the vehicle; and in steady state highway cruising, the internal combustion engine alone drives the vehicle. The internal combustion engine is sized to operate at or near its maximum fuel efficiency during highway cruising. The motor is operable as a generator to charge the batteries as needed and also for regenerative braking. No transmission is employed. The motor operates at significantly lower currents and higher voltages than conventionally and has a rated power at least equal to that of the internal combustion engine. In this manner a cost efficient vehicle is provided, suffering no performance disadvantage compared to conventional vehicles.
5404856 12 Fuel injector control utilizing fuel film flow parameters
A fuel injection control system for an internal combustion engine which compensates for intake port and intake valve wall wetting is disclosed. The system compensates for fuel film flow on the wall to maintain a substantially constant air/fuel ratio during acceleration and deceleration. Physical characteristics of the air and fuel used in engine combustion, intake manifold pressure, and engine speed are processed by the engine control to control the amount of fuel injected by the fuel injector with a compensation for unvaporized fuel on intake port surfaces.
5408972 7 Fuel injector control incorporating fuel vaporization parameters
A fuel injector control apparatus and system of controlling fuel injector operation is disclosed. The control utilizes signals representative of fuel vaporization parameters including conductive and convective fuel flow characteristics. In particular, the presence of liquid fuel on the walls of an intake port which fails to vaporize upon injection is compensated for by the fuel injector control. Algorithms are utilized for controlling fuel injection based upon the convective fuel vapor flow mass and the conductive fuel vaporization rate.
5408975 12 Priming control system for fuel injected engines
In a microprocessor-based electronic engine control system or ECU for electronic fuel injection which determines the amount of fuel to be injected on the basis of engine RPM and throttle opening position, modified by factors derived from sensed conditions of the engine and the environment, a single, long pulse width priming fuel pulse is injected upon cranking the engine. The priming fuel pulse is selected as an inverse function of engine temperature and delivered to the throttle bodies within a first period of time after the engine is initially turned over. The engine revolutions are counted until the engine starts. If the engine fails to reach a predetermined RPM for a predetermined time period (indicating that it has been successfully started) within a certain number of revolutions of the crankshaft, then a second priming pulse is delivered. The pulse width of the second pulse is independent of the pulse width of the first priming pulse but is again dependent on the engine temperature. The sets of first and second pulse widths correlated to engine temperature are preferably stored in ECU look-up table memory.
5423208 11 Air dynamics state characterization
The state of internal combustion engine inlet air dynamics is characterized in a substantially noise immune albeit rapid manner according to the degree by which a first set of criteria indicate a steady state condition in which engine inlet air rate substantially corresponds to cylinder inlet air rate or to the degree by which a second set of criteria indicate a transient condition in which engine inlet air rate does not substantially correspond to cylinder air rate. Cylinder inlet air rate may then be predicted in accord with the characterization.
5425340 9 Process of marking cylinders for control of an electronic injection
A system for producing a signal for marking cylinders for control of a phased sequential multipoint injection in an engine including a crankshaft sensor for providing a marking of passings of a top dead center for each of the cylinders and a system for detecting combustion misfires. The system includes the following successive steps. First, injection of fuel for a predetermined reference cylinder is stopped. An occurrence of a combustion misfire for the predetermined reference cylinder is then detected. The moment of stopping of the injection and the moment of detecting the combustion misfire is then compared, and the moment of passing of the intake or firing top dead center for the predetermined reference cylinder is identified. A signal for marking cylinders in phase with the top dead center signal is then produced, initialized at the moment of passing an intake or firing top dead center of the reference cylinder and resuming the sequence of the combustions.
5426587 38 Misfire discriminating method for an engine
A method of discriminating the misfire of a multicylinder engine for each cylinder (FIG. 1A), comprising the steps of discriminating a cylinder number (#i) at a present combustion stroke (S101); calculating a present momentum at the present combustion stroke, in a period in which no combustive work is done (S105); computing a second momentum at a second stroke preceding the present combustion stroke two times, in a period in which no combustive work is done (S106); averaging the present and second momentums (S107); deriving a first momentum at a first stroke preceding the present combustion stroke one time, in a period in which no combustive work is done (S107); taking a difference between the averaged momentum and the first momentum (S107); setting a misfire judgement level from a map of combustion conditions in a function of said first momentum and engine load data (S108); and comparing the difference with the misfire judgement level (S109), thereby to judge the misfire condition for each cylinder without being affected by a manufactural allowance.
5520153 12 Internal combustion engine control
Internal combustion engine cylinder volumetric efficiency is corrected for deviations in cylinder combustion temperature away from volumetric efficiency calibration combustion temperature to account for engine cylinder intake air and fuel dynamics under conditions deviating away from calibration conditions. The significance of the combustion temperature deviation on cylinder intake air and fuel heating is evaluated in accord with engine intake mass airflow information. The corrected volumetric efficiency is applied for improved cylinder intake air mass determination and for precise cylinder air/fuel ratio control.
5522365 12 Internal combustion engine control
Automotive internal combustion engine air/fuel ratio control accuracy improvement is provided through correction of engine cylinder volumetric efficiency to account for variation in engine intake air temperature away from volumetric efficiency calibration intake air temperature, and to account for heating of the intake air passing through engine intake air passages prior to entry to the engine cylinders. Change in air density and change in airflow dynamics occurring in engine intake air passages are accounted for in the volumetric efficiency correction so that engine control commands more accurately account for actual engine cylinder intake air mass.
5529043 38 Signal processor
This invention relates to a signal processor for processing a signal and outputting a processed value. The processor comprises a mechanism for determining whether or not the signal exceeds a preset value, a mechanism for outputting the signal as the processed value when the signal does not exceed the preset value, and a mechanism for outputting the preset value as the processed value when the signal exceeds the preset value. This invention further provides a mechanism for computing a difference between the signal and the preset value when the signal exceeds the preset value, a memory for storing this difference as a postponed correction amount, and a mechanism for adding the postponed correction amount to said signal when the signal no longer exceeds the preset value. In this way, by compensating at a later time for errors arising from modifications made when the signal exceeded said preset value, the precision of operations and controls based on the processed value is improved. Further, in control systems using the integral of said signal, the precision of integral values is also improved. This invention therefore provides effective correction of signal processing errors when applied to the output of an air flow meter having a heating element wound on a bobbin, or to the control of a flowrate control valve installed in an intake air passage of a lean burn engine.
5535620 26 Engine management system
The present invention provides a system for testing an engine designed to be run under the control of an engine control module. The system modifies the operation of the engine while maintaining the engine control module active so as to allow control of the engine to be transferred between the engine management system and the engine control module. The present invention allows an operator to alter the operation of the engine by varying the signals to the engine's injectors and ignition systems. While the engine is operating under user defined injector signals, a simulated exhaust gas signal is provided to the engine control module. This simulated exhaust gas signal allows the engine to be tested under operating conditions where the exhaust gas generated would cause correction by the engine control module making the test condition sought unsustainable. The system can be programmed to periodically return all functions to the engine control module allowing the establishment of new operating parameters for the engine. In a preferred embodiment, the engine management system can also take control of the engine's electronic ignition system allowing the user to alter spark timing and ignition dwell time. In addition to providing integrated injector and ignition control, the engine management system of the present invention allows the user to take engine control from and return engine control to the engine control module without knowing the details of the algorithms used to run the engine control module.
5558067 9 Double pulsing electronic unit injector solenoid valve to fill timing
An electronic fuel injector includes a metering chamber defined by a metering piston and the sides and bottom of a bore defined within the injector body, and a timing chamber defined by the metering piston, the bore sides and a timing plunger slidably disposed within the bore. A biasing spring is connected to opposing surfaces of the timing plunger and metering piston for biasing the metering piston away from the timing plunger. The metering chamber is in constant fuel communication with a pressurized fuel source and the timing chamber receives fuel from the fuel source according to the actuation of a solenoid actuated control valve disposed therebetween. A fueling strategy for such an injector requires actuating the control valve to substantially fill the timing chamber before filling the metering chamber, for subsequent injection into the engine, when the force of the biasing spring is at a minimum.
5585553 8 Apparatus and method for diagnosing an engine using a boost pressure
An apparatus and method for diagnosing an engine using a computer based model of the boost pressure of a turbo-charger.
5594180 27 Method and apparatus for fault detection and correction in Coriolis
Apparatus and methods for detecting and correcting various fault conditions in an operating Coriolis effect mass flowmeter. The apparatus of the present invention receives information from an operating Coriolis mass flowmeter and compares the information to threshold signatures representing various fault conditions. When a fault condition is detected, output signals are applied to inform an operator and to control the mass flow rate through the flowmeter to correct the fault condition. Specifically, the methods of the present invention detect the presence of a crack in the flow tubes and stop the flow of material to prevent release of the material through a cracked flow tubes. Other methods of the present invention detect the void fraction of material flowing through the flow tubes, compute a corrected actual mass flow rate, and control the mass flow rate through the flowmeter to compensate for the effects of the void fraction. Signature information relating to threshold values for measured frequency, drive power, temperature and mass flow of the operating flowmeter as well as the slope and curvature of changes in each measured operating parameter are stored in memory within the fault detection apparatus of the present invention.
5596972 12 Integrated fueling control
Integrated control of internal combustion engine fueling including control of fuel injectors and control of purge valve position to vary the rate at which fuel vapor trapped in a canister is purged to an engine intake manifold, determines the mass of purge vapor reaching the intake manifold, estimates the mass of purge vapor reaching each engine cylinder, and adjusts the engine cylinder fuel injection mass in response thereto to provide an accurate overall cylinder fueling insensitive to the purge rate, allowing the purge control operations to be aggressively driven while ambitious cylinder air/fuel ratio standards are maintained. Feedforward purge control proactively adjusts purge control commands in response to desired cylinder purge mass and to purge vapor flow dynamics and feedback purge control trims the purge control commands in response to a difference between the desired cylinder purge mass and estimated cylinder purge mass.
5597951 31 Intake air amount-estimating apparatus for internal combustion engines
An intake air amount-estimating apparatus for an internal combustion engine estimates an amount Gc of intake air actually drawn into a combustion chamber, based on a model formulated on an intake passage in which a portion of the intake passage extending from a throttle valve to each of the combustion chamber is regarded as a chamber. A value Gc' of the intake air amount in a steady operating condition is determined at least based on engine rotational speed and pressure within the chamber. An effective opening area A of the throttle valve is determined at least based on throttle valve opening and the pressure within the chamber. A first-order delay value ADELAY of the effective opening area of the throttle valve is determined. The intake air amount value Gc' is corrected to calculate the amount Gc by an equation of Gc=Gc'.times.(A/ADELAY). The ADELAY value is calculated by the use of a correction value for use in calculating the ADELAY value, which is set in a manner depending on a detected change in the amount of air charged in the chamber.
5608632 18 Self-contained sequential-throttle-body-injection engine control system
An engine control system that is configured to be attached to the intake port or intake manifold of a reciprocating engine. The system can be designed to allow installation as original equipment or as a retrofit unit. In either case, the system provides the engine with a dual ignition and electronically controlled fuel-injection. The system includes a master control unit (MCU) that utilizes a firmware operated microprocessor. The MCU is connected to a plurality of sensors that sense critical system parameters that determine the engine settings. All system parameters are user-controlled by three system command switches that are located on a control display unit (CDU). The CDU is attached to the MCU by an electrical cable and is positioned on the vehicle to provide easy accessibility.
5609139 23 Fuel feed control system and method for internal combustion engine
A fuel feed control system and method for an internal combustion engine is provided with a device for setting the quantity of fuel and a fuel injector for feeding fuel in accordance with the fuel quantity set by the fuel quantity setting device. The fuel quantity setting device is provided with a device for estimating the quantity of air to be inducted on the basis of the result of detection of the quantity of inducted air at an inducted air quantity detection time, inducted air quantity information detected before the inducted air quantity detection time and predicted information. The inducted air quantity estimation device is provided with a device for changing the predicted information so that, when a transient operation state of the engine is detected by a transient operation state detector, the estimated quantity of inducted air and a real quantity of inducted air become closer to each other. The control system permits setting of an accurate injection quantity of fuel by precisely measuring a quantity of inducted air even when the state of operation of the engine is in a transition period.
5614667 12 Method and apparatus for controlling throttle valve contamination
The invention relates to technology for avoiding the influence of intake air volumetric flow rate changing due to contamination of a throttle valve opening. When the opening of the throttle valve of an internal combustion engine is large, the atmospheric pressure is estimated based on, the intake air volumetric flow rate which is estimated based on the throttle valve opening, and on a separately detected intake air mass flow rate. After this, within a predetermined time for example, when the opening of the throttle valve changes to a small opening while the atmospheric pressure is virtually constant, the atmospheric pressure is similarly estimated based on the estimated intake air volumetric flow rate and on the detected intake air mass flow rate. A relationship between the throttle valve opening and a value related to the throttle valve opening is then learned and corrected so that the latter estimated atmospheric pressure which is influenced by contamination of the throttle valve approaches the former estimated atmospheric pressure of high reliability which is not influenced by contamination of the throttle valve.As a result, the atmospheric pressure can be estimated to good accuracy even when the throttle valve is maintained in the low opening region. In addition, the performance of the various controls based on the throttle valve opening can be improved.
5663621 38 Autonomous, low-cost, automatic window covering system for daylighting
A system for the automatic regulation of daylight admitted into a room, specifically intended for daylighting applications. A preferred embodiment, system 10, consisting of a conventional control unit 11, a conventional exterior brightness sensor 12, and a conventional electronically controlled window covering 13, operates to block direct solar radiation while admitting substantial diffuse illumination. Control unit 11, brightness sensor 12, and window covering 13 are interconnected in a known manner to enable control unit 11 to register the brightness of the external illumination, and to actuate window covering 13. Control unit 11 consists of a conventional microcontroller 14, a conventional real-time clock/calendar 15, and a conventional Non-Volatile Memory (NVM) 16. Microcontroller 14, clock/calendar 15, and NVM 16 are interconnected in a known manner to enable microcontroller 14 to register the output of clock/calendar 15, and to exchange data with NVM 16. NVM 16 holds pre-stored data which defines a desired setting of window covering 13 as a function of the time of the day and the day of the year, for the prevailing latitude, longitude, and window azimuth orientation. In the preferred embodiment, this desired setting is one which will block the admission of incident direct solar radiation, while still admitting substantial diffuse illumination. Microcontroller 14 periodically registers the exterior brightness as measured by sensor 12, registers the data stored in NVM 16, estimates a desired setting of window covering 14 on the basis of these data, and actuates window covering 13 to the desired setting.
5698779 23 Apparatus for detecting intake air quantity of internal combustion
An apparatus for detecting the quantity of intake air to be compared with a reference quantity is arranged in an internal combustion engine having a mechanism for continuously varying the open/close timing of at least one of the intake valves and the exhaust valves. The apparatus has a unit for detecting a load of the engine and a unit for detecting an actual quantity of intake air according to the detected load and valve timing that is dependent on the detected load.
5699776 5 Nozzle for mixing oxidizer with fuel
A nitrous oxide nozzle for inserting a mixture of oxidizer and fuel into a passage of an engine's intake manifold has two inlet ports, each of which communicate with a conduit. A nitrous oxide conduit vents into the apex of a bell-shaped emitter, and a fuel conduit vents into a side portion of an atomizing cavity adjacent the emitter, so that high-pressure nitrous oxide gas flowing through the emitter entrains fuel flowing through the fuel conduit, then atomizes the fuel and mixes with the fuel. The bell shape of the emitter provides improved mixing of fuel with the nitrous oxide; the discharged fuel/oxidizer mixture from the emitter is introduced into air flowing through an engine's intake manifold, and is conveyed to a cylinder for burning.
5723782 7 Method of land vehicle suspension evaluation and design through roll
A method of land vehicle suspension evaluation and design through roll angle analysis. The method is based on predicting front roll angle and rear roll angle for a given road bank angle and lateral vehicle force. Method steps include determining a vehicle front section sprung weight, determining a vehicle rear section sprung weight, predicting a front roll angle, predicting a rear roll angle, comparing the predicted front roll angle XXXX to the predicted rear roll angle, and changing suspension components XXXXXXXX until the predicted front roll angle equals the predicted rear roll angle. Benefits associated with equalizing the front and rear roll angles include improved vehicle stability, increased total vehicle tractive capacity, and better handling.
5749346 40 Electronic control unit for controlling an electronic injector fuel
A method and apparatus are disclosed for controlling operation of a spark-ignited internal combustion engine by adjusting pulse width of fuel injected into the engine. An initial fuel pulse width is set for respective pairs of engine operating parameters such as engine speed and manifold pressure. The pulse width is adjusted by a control, for each pair of parameters, to obtain maximum performance, for example, as indicated by a torque detector. Each time a pulse width is adjusted, all previously adjusted pulse widths are compared with corresponding pulse widths in stored template fuel maps. The best matched template fuel map is then used in conjunction with all previously adjusted points to create a new operational fuel map to run the engine until a more updated operational fuel map can be created upon additional fuel pulse widths being tuned.
5781012 22 Ion current detecting apparatus for internal combustion engines
An ion current detection apparatus for detecting an ion current caused by combustion in a cylinder of an internal combustion engine comprises an ion current detection circuit for detecting the ion current, a gain adjustment circuit for controlling to keep the magnitude of low frequency components of the detected ion current at a constant value, an amplifier for amplifying high frequency components of the detected ion current and outputting a high frequency component detection signal, a magnitude detection circuit for detecting the magnitude of the detected ion current to output an ion current detection signal when the detected magnitude is larger than a predetermined value, and a comparator for comparing the high frequency component detection signal with the ion current detection signal delayed by a delay circuit to output a knocking detection signal.
5809446 11 Instrument for measuring fuel injection time
A test instrument for measuring the injection time of different types of electronic fuel injectors in a fuel injected engine is provided. The test instrument is coupled to receive an injection signal from any of a variety of fuel injector types and over a range of injection times and repetition rates. The injection signal is digitally sampled and stored in memory. The injection time is determined according to an algorithm executed by a microprocessor which operates on the stored injection signal to determine first and second edges, with the time difference between the first and second edges representing the injection time. The second edge must be followed by the injection signal being substantially equal to the battery voltage for a predetermined hold time in order to reject false edges occurring before the second edge.
5813374 15 Two-cycle engine with electronic fuel injection
A fuel injection system for a two-stroke cycle engine comprising an air manifold; a throttle valve; a fuel injector; a fuel supply system including a fuel pump; a battery voltage sensor; an air temperature sensor; an engine speed sensor; a timing sensor; a barometric pressure sensor; a throttle position sensor; a first data processor for receiving and processing sensing signals for determining fuel injector duration and timing and fuel pump operating speed; a first data processor temperature sensor for sensing the relative temperature of certain electronic components in the first data processor; a heater operatively associated with the first data processor electronic components for selectively heating the electronic components; and a second data processor operable independently of the first data processor for receiving an electronic component temperature sensing signal and for generating a control signal to the heater responsive thereto for heating the components when the temperature thereof is below a predetermined minimum value.
5861551 16 Combustion state detecting apparatus for an internal-combustion engine
An combustion state detecting apparatus for an internal-combustion engine is equipped with: an ignition coil (4) for applying a high voltage (V2) for igniting to the spark plugs (8a through 8d) of the cylinders of an internal-combustion engine; an ionic current detecting circuit for applying a bias voltage (VBi) to at least one spark plug to detect ionic currents (ia, ib) flowing via the spark plug which has just been subjected to ignition control; comparator circuits (14a, 14b) which compare detected ionic current signals (Eia, Eib) with threshold values (TH1, TH2) and turn them into ionic current pulses (Gia, Gib); and an ECU (2A) which drives the ignition coil according to a crank angle signal (SGT) and determines the combustion state of the internal-combustion engine. The ECU changes the threshold values for each ignition control and judges the combustion state according to the respective threshold values and the state in which the ionic current pulses are generated.
5878567 11 Closely coupled exhaust catalyst system and engine strategy associated
A catalytic converter having a first highly loaded palladium or trimetal catalytic element containing palladium of relatively large particle size closely coupled to the engine exhaust manifold, followed by one or more second catalytic elements having high oxygen storage capacity to provide protection against warmed-up engine emissions break through, is efficient in reducing cold-start emissions through early catalyst light-off. The catalytic converter is advantageously used in conjunction with an engine strategy employing oscillative spark retard during warm up to further reduce catalyst light-off and transient spark advance dampening to eliminate spiking of HC and CO during engine transients. When employed in conjunction with secondary air injection, the engine EEC is programmed to delay air injection for a period following cold-start sufficient to assure that catalyst light-off is rapidly attained.
5890476 8 Fuel delivery nozzle
The fuel injection nozzle (10) includes a nozzle tip (16) that is formed in the shape of a substantially symmetrical double-sided wing having a leading edge (40) for facing the oncomning air stream passing through the air inlet manifold of an internal combustion engine. The arcuate walls (46 and 48) of the nozzle tip diverge on opposite sides of the cord line (44), and the internal conduit (22) guides the liquid nitrous oxide to move through the nose (50) of the nozzle tip and impinge with the flow of fuel moving through the adjacent internal conduit (24). A zone of low pressure is induced by the air movement (42) passing about the wing-shaped nozzle tip at a position behind the leading edge (40) of the nozzle tip, and the nitrous oxide tends to change states from liquid to gas as it emerges from the internal conduit (22) and moves through the exit port (52). This displaces the area where the nitrous oxide changes state from liquid to gas, so as to reduce the likelihood of forming frost and ice on the surfaces of the nozzle.
5900536 16 Device for detecting knocking of an internal combustion engine
A device for detecting knocking in an internal combustion engine which, when spike noise or noise due to disturbance in the flame in low-load running are generated, does not erroneously detect it as knocking. Knocking frequency components passing through a band-pass filter 32 and frequency components lower than the knocking frequency and passing through a low-load noise band-pass filter 321 are picked from the ionic current detected by an ionic current detecting unit 17. When the level of the low-frequency components is larger than a predetermined value, it is regarded that the noise is generated due to unstable combustion during the low-load operation or the spike noise is generated due to corona discharge of a spark plug 16, and the determination of the occurrence of knocking is prevented. This constitution makes it possible to prevent erroneous detection of knocking.
5960777 21 Combustion engine air supply system
A novel method of operating an internal combustion engine employs a selectively gas permeable membrane to provide either oxygen or nitrogen enriched air feed to beneficially affect engine performance. By feeding enriched air from a membrane unit such performance parameters as reduced NOx emissions, lean burn limit, engine power, and reduced cold start emissions can be enhanced relative to feeding ambient air. The selectively gas permeable membrane unit further includes a nonporous membrane (i) having an oxygen/nitrogen selectivity of at least 1.4 and a permeability to oxygen of at least 50 barrers; (ii) formed from an amorphous copolymer of perfluoro-2,2-dimethyl-1,3-dioxole; and (iii) being at a temperature below the glass transition temperature of the amorphous copolymer.A cylindrical module having many substantially parallel aligned small diameter hollow fiber membrane structures is ideally suited for carrying out the novel method. The apparatus can be configured to furnish only one of permeate fraction, oxygen enriched air or retentate fraction, nitrogen enriched air. Additionally, the apparatus can be configured to switch between oxygen and nitrogen enrichment modes.
5983740 12 Apparatus and method for controlling a torque transmitting system and a
The present invention relates to an apparatus and a method for controlling the operation of an engageable and disengable torque transmitting system and of an automated transmission that is connected to a differential and to the torque transmitting system by an input shaft. The system and the transmission are disposed in a power train of a motor vehicle having variable-speed drive unit, and the transmission is shiftable into any one of a plurality of gears. The torque transmitting system and the automated transmission comprise a control unit and at least one actuator arranged to vary the extent of engagement of the torque transmitting system and to shift the transmission into a selected gear. Further, there are means for transmitting signals between the control unit and the drive unit to controllably reduce the speed of said drive unit in response to at least one initial stage of automated shifting of said transmission into a selected gear and to controllably increase the speed of said drive unit during a next-following stage of automated shifting of said transmission into said selected gear.
5992389 10 Apparatus and method for controlling fuel injection of an internal
An intake air temperature TC of a cylinder is estimated from an equation of TC=TA+HEXGIN (TA-TA)+273.degree. K on the basis of a cylinder heat-transfer coefficient HEXGIN, an intake air temperature TA and a cooling water temperature TW. An operation of a first correction coefficient KTA is carried out on the basis of an equation KTA=TTC/TC with the use of an intake air temperature TTC estimated under reference environment. Next, an operation of a finally correction coefficient KTAHOS is carried out on the basis of an equation of KTAHOS=KTA.times.[1.0-{(KTA-1.0).times.KCHOS}] with the use of an air density fine adjustment coefficient KCHOS, and then, by taking advantage of the finally correction coefficient KTAHOS, a fuel injection quantity based on an intake air pressure is corrected.
6029627 16 Apparatus and method for controlling air/fuel ratio using ionization
An air/fuel ratio control system for an internal combustion engine to reduce emissions and increase engine efficiencies includes an ionization apparatus for detecting and measuring ionization within a combustion cylinder and generating an ionization signal based upon the ionization detection and measurements. Also included is an air/fuel ratio controller in electrical communication with the ionization apparatus. The controller receives the ionization signal and controls the air/fuel ratio in the engine based at least in part upon the ionization signal. In a preferred embodiment of the control system, the controller controls the air/fuel ratio based upon a first local peak in the ionization signal. In another embodiment, the controller controls the air/fuel ratio based upon maximizing the first local peak in the ionization signal.
6029630 21 Engine control device having an arrangement for limiting interrupt
An engine control device comprising has a processor which receives a variety of operating state detection signals (such as an engine crank angle signal and an accelerator opening signal) and computes control quantities for an interrupt routine on the basis of a predetermined signal such as the engine crank angle signal or a signal generated at fixed basic intervals, in accordance with a predetermined program during a period of time between the predetermined signals. A means is provided for counting and/or limiting the number of times interrupt processing triggered by an activation signal for the routine is executed during the period of time between the predetermined signals whenever processing of the routine exists.
6062202 17 Two-cycle engine with electronic fuel injection
A fuel injection system for a two-stroke cycle engine comprising an air manifold; a throttle valve; a fuel injector; a fuel supply system including a fuel pump; a battery voltage sensor; an air temperature sensor; an engine speed sensor; a timing sensor; a barometric pressure sensor; a throttle position sensor; a first data processor for receiving and processing sensing signals for determining fuel injector duration and timing and fuel pump operating speed; a first data processor temperature sensor for sensing the relative temperature of certain electronic components in the first data processor; a heater operatively associated with the first data processor electronic components for selectively heating the electronic components; and a second data processor operable independently of the first data processor for receiving an electronic component temperature sensing signal and for generating a control signal to the heater responsive thereto for heating the components when the temperature thereof is below a predetermined minimum value.
6067965 9 Method and system for determining a quantity of fuel to be injected into
A method and system for determining a quantity of fuel to be injected into a multi-cylinder, internal combustion engine during each combustion event of the engine includes an air flow sensor for sensing a quantity of air flowing through the engine. An electronic control unit is operative to determine a desired combustion fuel quantity based on the quantity of air flowing through the engine and determine a desired fuel injection quantity based on a previous fuel injection quantity delivered during a previous combustion event and the desired combustion fuel quantity. The control unit is further operative to control the amount of fuel injected into the engine for the current combustion event based on the desired fuel injection quantity.
6075366 13 Ion current detection apparatus for an internal combustion engine
An ion current detection apparatus for an internal combustion engine includes a voltage limiting device for limiting an amount of counterelectromotive force of a primary coil of ignition coil applied to switching elements, a capacitor for applying an ion current detection voltage to a spark plug, and an ion current detection circuit for detecting an ion current wherein the capacitor is connected to the voltage limiting device.
6092015 15 Combustion state detecting apparatus for an internal-combustion engine
A combustion state detecting apparatus for an internal-combustion engine improves the signal-to-noise ratio of an ionic pulse signal to achieve good interfacing characteristic, high detection accuracy, and high control reliability without adding to cost. An electronic control unit (2A) which detects the combustion state in a spark plug according to an ionic pulse signal (Gi) includes: an edge detecting circuit (36) for detecting an end edge of an ionic pulse contained in the ionic pulse signal in a detection zone from a second reference crank angle to a first reference crank angle; a level detecting circuit (37) for detecting the level of the ionic pulse signal at the first reference crank angle; and a circuit (38) for determining the combustion state of the internal-combustion engine according to a detection result (Ni) received from the edge detecting circuit and a detection result (Li) received from the level detecting circuit. Thus, an ionic current detection signal can be pulsed using a simple circuit configuration, and the simple determining logic is used to reduce the load on the arithmetic processor of the electronic control unit.
6116225 13 Laminar flow nozzle
A novel laminar flow nozzle for fuel injected racing cars is described herein. One novel feature comprises a narrow angle between converging conduit component channels. These channels, in turn, supply vaporized fuel and nitrous oxide to the main chamber of the nozzle. Another important novel feature is the integral structure of the nozzle; the conduit components, generally rigid and cylindrical in shape, are physical integral components of the nozzle. The result of our invention is a nozzle with a smooth laminar flow of gases which results in less turbulence and greater horsepower.
6118276 11 Ion current detection device
An ion current detection device is disclosed that is designed to hold an ion current output voltage within a prescribed limit to ensure proper operation of a processing device connected to the output side thereof, while, at the same time, shortening the decay time of the LC resonance associated with an ignition coil. An ion current flows from one end of a capacitor and back to the other end thereof passing through an ignition coil secondary winding, a spark plug, an ion current detecting resistor, and a load resistor. A voltage equal to -(ion current value).times.detecting resistor value appears at a node between the ion current detecting resistor and the load resistor. This voltage is inverted by an inverting circuit and supplied as an ion current output to the processing circuit. The resistance value R1 of the ion current detecting resistor and the resistance value R2 of the load resistor are chosen to satisfy two requirements, that is, to hold the ion current output within supply voltage and to quickly attenuate and reduce the noise (LC resonance current) caused by the ignition coil.
6120677 21 Temperature control for all range oxygen sensor
A constant current Iconst is applied to an electromotive force cell which is interposed between a gap (measurement chamber) of a fixed atmosphere and an oxygen reference chamber of a constant oxygen content, for measurement of a resistance value of the electromotive force cell, whereby the resistance value can be measured accurately irrespective of an oxygen content in an atmosphere to be measured by an oxygen sensor element or cell unit. The resistance value of the electromotive force cell is measured at a predetermined timing T2 after application of a current is started, so that a measure resistance value is free of a variation of a resistance value due to deterioration of porous electrodes of an electromotive force cell, such a variation being included in the measured resistance value in case the measurement is done by using an AC current, and therefore accurate measurement can be attained. A temperature control methods and a temperature control apparatus for an oxygen sensor, capable of detecting the temperature accurately without suspending measurement of an oxygen content for a long period of time are also provided. Further, a temperature control method and a temperature control apparatus for an oxygen sensor, capable of detecting not only the temperature of the electromotive force cell but the temperature of the pump cell by applying a current or voltage to the electromotive force cell are provided.
6138642 5 Method and system for compensating fuel rail temperature
A method and system for fuel rail compensation in a returnless electronic fuel pump arrangement provides modification of fuel pulsewidth based on measured or inferred rail temperature. The present invention applies fuel pulsewidth control modifiers to enlarge the fuel pulse to increase the quantity of fuel being delivered to at least one fuel injector to offset any drop in fuel density and injector performance caused by fuel rail temperature. The present invention generates these modifiers separate from a vehicle's normal fuel delivery system adaptive control process, thereby eliminating any unnecessary adaptive processing and limiting of adaptive control range.
6148800 6 Injection temperature fuel feedback
A method is provided for injecting fuel into an internal combustion engine. The method includes providing the engine with a plurality of fuel injectors, each including an electromechanical mechanism for receiving fuel under pressure via a fuel supply system and for injecting a measured amount of fuel into the engine in response to a command signal whose duration is indicative of the amount of fuel to be injected. The command signal is determined based upon a measured throttle position, engine speed and engine load. A resistance of a solenoid coil of the electromechanical mechanism is then calculated and the command signal is adjusted by incrementing or decrementing the command signal to compensate for variations in the measured resistance of the solenoid coil of electromechanical mechanism due to temperature variations.
6152640 12 Ball joint
Sliding contact portions on an inner surface of a bearing seat slidably support a ball head of a ball stud in a housing. Spaces between one or more of the sliding contact portions contain lubricant reserves. Load receiving portions on the outer surface of the bearing seat facing the housing also support the load placed on the ball stud. Protruding portions on the sliding contact portions decrease contact surface area and permit lubricant to cover nearly the entire ball head surface. The load receiving portions and sliding contact portions, including the protruding portions, deform to absorb repeated heavy loads while maintaining friction compensation and stable torque. The ball joint has an improved ability to compensate for dimensional tolerances, which facilitates component manufacture. The load withstanding ability, lubrication efficiency and durability of the ball joint are thus improved.
6155241 8 Method for identifying knocking combustion in an internal combustion
A method for determining knocking combustion in an internal combustion engine having an alternating current ignition system, which method is used to control the duration of the ignition spark burning time as well as the ignition energy while the fuel-air-mixture is ignited by the spark plug, in dependence on the load condition and other characteristic values provided by the engine.
6155242 9 Air/fuel ratio control system and method
An air/fuel ratio control method for an internal combustion engine corrects airflow prediction errors. The method compares the current airflow to the value that was predicted several events in the past and creates an error signal. Based on this error signal, the current fueling is adjusted. These two mixtures, with equally offsetting lean and rich air/fuel ratios allow the catalytic converter to operate at peak efficiency despite prediction errors.
6161384 25 Turbocharger control management system throttle reserve control
A controlled power system and method for an internal combustion engine having a turbocharger controls the engine to vary differential pressure across the throttle, delta P, throttle reserve, according to a predetermined throttle reserve profile relative to at least one engine parameter.
6170587 38 Hybrid propulsion system for road vehicles
A hybrid propulsion system (100) for use in road vehicle operations, which propulsion system includes a power splitting mechanical transmission (108), suitably a three shaft epicyclic gearbox (117, 118, 119), for coupling to a tailshaft (115) of the vehicle; a first drive unit (105) arranged for regenerative operation and coupled to the power splitting mechanical transmission (108); a second drive unit (110) arranged for regenerative operation and coupled, independently of said first drive unit, to the power splitting mechanical transmission (108); a non-regenerative third drive unit (113) for coupling, in parallel to said power splitting mechanical transmission, to the tailshaft; and a propulsion control system (122) for coordinating operation of the drive units in accordance with a plurality of predetermined modes corresponding to a drive cycle of the vehicle. Two forms of the invention are disclosed, being suited to non-transit and transit operations, respectively. Methods for the optimal control of the hybrid propulsion system of each form of the invention are also disclosed.
6189514 12 Electronic fuel injection apparatus
In an electronic fuel injection apparatus which controls a fuel injection timing of a fuel injection pump for a diesel engine through a timing control valve, when the time during which a present final feedback correction quantity obtained by adding, to the last final feedback correction quantity, the present feedback correction quantity which is computed according to a difference between an actual fuel injection timing and a target fuel injection timing, reaches a lower limit or an upper limit and also the difference is outside a predetermined range, lasts for a predetermined time, controlling a timing control valve is stopped.
6209672 34 Hybrid vehicle
A hybrid vehicle comprising an an internal combustion engine controllably coupled to road wheels of the vehicle by a clutch, a traction motor coupled to road wheels of said vehicle, a starting motor coupled to the engine, both motors being operable as generators, a battery bank for providing electrical energy to and accepting energy from said motors, and a microprocessor for controlling these components is operated in different modes, depending on its instantaneous torque requirements, the state of charge of the battery bank, and other operating parameters. The mode of operation is selected by the microprocessor in response to a control strategy.
6212467 7 Electronic engine control system
An electronic engine control system for an internal-combustion engine has a computer with programs stored therein and interacts with a sensor system to determine a residual gas fraction in a combustion space of the engine. The engine control system generates a signal value, which correlates with the current residual gas fraction, from a signal value which is generated by the engine control system and which correlates with a current air/fuel mass ratio of a carbureted fuel fed to the combustion space, and from a signal value which is sensed by the sensor system and which correlates with a current air/fuel mass ratio of an exhaust gas discharged from the combustion space after the combustion.
6250292 9 Method of controlling an engine with a pseudo throttle position sensor
In the event that a throttle position sensor fails, a method is provided which allows a pseudo throttle position sensor value to be calculated as a function of volumetric efficiency, pressure, volume, temperature, and the ideal gas constant. This is accomplished by first determining an air per cylinder (PAC) value and then calculated the mass air flow into the engine as a function of the air per cylinder (APC) value. The mass air flow is then used, as a ratio of the maximum mass air flow at maximum power at sea level for the engine, to calculate a pseudo throttle position sensor value. That pseudo TPS (BARO) value is then used to select an air/fuel target ratio that allows the control system to calculate the fuel per cycle (FPC) for the engine.
6272427 9 Method and device for controlling an internal combustion engine in
A method and a device for controlling an internal combustion engine as a function of performance characteristics such as load, engine speed, a corrected value for the intake air temperature being used for the control, the corrected value being obtained from the following formula:TANSK=T1+(TWS-T1)*fwhereTANSK=corrected value of the intake air temperature,T1=value (TANS) of the intake air temperature remote from the internal combustion engine determined by calculation or measured,TWS=value of the mean temperature of the intake manifold,f=weighting factor ranging from 0 to 1.
6275041 12 Combustion state detecting apparatus for internal combustion engine
A combustion state detecting apparatus for an internal combustion engine is imparted with facility for determining discriminatively the causes for non-occurrence of combustion. The apparatus includes a spark plug (4) for generating a spark discharge upon application of a high voltage generated by an ignition coil (1) in response to an ignition signal (X1) to thereby fire an air-fuel mixture within a cylinder of the internal combustion engine, an ion current detecting means (6A) for detecting as ion current detection signals (X2a; X2) an ion current corresponding to an amount of ions produced within the cylinder immediately after combustion of the air-fuel mixture, a signal detecting means (7A; 7B; 9) for comparing the ion current detection signal (X2a) outputted from the ion current detecting means (6A) with a first reference voltage (Vth1) to thereby output a first decision signal (X3) while comparing the ion current detection signal (X2) with a second reference voltage (Vth2) to thereby output a second decision signal (X4) while invalidating output of the second decision signal (X4) during a predetermine time period from a time point at which the comparison of the ion current detection signal (X2) with the second reference voltage (Vth2) is started, and an estimating logic unit (9, 10; 112) for estimating a cause for nongeneration of a combustion signal on the basis of output statuses of the first decision signal (X3) and the second decision signal (X4).
6298824 15 Engine control system using an air and fuel control strategy based on
A control system for a fuel injected engine provides an engine control unit that receives signals from a throttle handle that is manually manipulated by an operator of a marine vessel. The engine control unit also measures engine speed and various other parameters, such as manifold absolute pressure, temperature, barometric pressure, and throttle position. The engine control unit controls the timing of fuel injectors and the injection system and also controls the position of a throttle plate. No direct connection is provided between a manually manipulated throttle handle and the throttle plate. All operating parameters are either calculated as a function of ambient conditions or determined by selecting parameters from matrices which allow the engine control unit to set the operating parameters as a function of engine speed and torque demand, as represented by the position of the throttle handle.
6325044 9 Apparatus and method for suppressing diesel engine emissions
An exemplary embodiment of the invention is a method of controlling fuel injection timing in a compression ignition engine including at least one cylinder. The method includes monitoring engine throttle position and change. One of an acceleration and a load ascending transient operating mode is detected in response to the monitoring of throttle position and change. Fuel injection timing for the at least one cylinder is controlled in accordance with a predetermined timing schedule in response to the detection of one of an acceleration and a load ascending transient operating mode. A system for implementing the method is also disclosed.
6334357 8 Internal combustion engine misfire detection method
A method for detecting a misfire in at least one truck or motor vehicle internal combustion engine cylinder by analysing the values (Cg, n, i) of a quantity (Cg) characteristic of combustion and generated by observing the rotation of the crankshaft to detect the occurrence of a misfire. According to the method, misfire detection is suspended for a predetermined time when the analysis of said values (Cg, n, i) reveals anomalies originating in the transmission power line between the drive shaft and the vehicle wheels.
6386186 15 Fuel vapor handling system
A fuel vapor handling system for a dual fluid fuel injection system, including: a fuel supply apparatus and a gas supply apparatus for respectively supplying liquid fuel and gas-vapor mixture to at least one delivery injector of the dual fluid fuel injection system, the fuel supply apparatus including a fuel pump; and a fuel vapor control device providing a fluid communication between the fuel supply apparatus downstream of the fuel pump and the gas supply apparatus to allow fuel vapor present within the fuel supply apparatus to pass to the gas supply apparatus for subsequent delivery by the at least one delivery injector. The fuel vapor device preferably allows the pressure of the liquid fuel supplied to the at least one delivery injector to be substantially equalized with the pressure of the gas supplied to the delivery injector.
6393903 6 Volumetric efficiency compensation for dual independent continuously
A method of estimating the volumetric efficiency of an internal combustion engine having independent intake and exhaust cam phase variation, compensates a nominal or base estimate of the volumetric efficiency in two successive stages: an intake stage, and an exhaust stage. The intake stage compensates for the effects of intake cam variation, using the base volumetric efficiency estimate as a starting point; and the exhaust stage compensates for the effects of exhaust cam variation, using the output of the intake stage as a starting point. The volumetric efficiency so compensated is then used to accurately compute the mass intake airflow for engine control purposes.
6405705 8 Method and apparatus for reducing locomotive diesel engine smoke using skip
A diesel engine, having a plurality of individually controllable fuel injected cylinders, is operated in a skip firing mode to reduce smoke emissions during low power operation. The system senses certain identified engine operating parameters and when these parameters exceed predetermined thresholds for a predetermined time, then the skip firing is implemented. In another embodiment, it is possible to implement several different skip firing patterns dependent upon engine performance. Upon implementation of skip firing, the engine timing angle is reset by a fixed angle and a multiplication factor is included in the speed loop integrator to ensure that the appropriate fuel volume value is injected into each cylinder immediately upon initiation of skip firing. Skip firing is then disabled when another set of predetermined conditions is satisfied.
6484688 16 Control methodology for an internal combustion engine that utilizes a
An internal combustion engine that utilizes a control system for improving operation of the engine under a variety of conditions. The control system includes a sensor that directly senses a combustion condition in a cylinder. The output of the sensor is utilized in adjusting the air-fuel mixture delivered to other, non-sensed cylinders to optimize engine operation.
6505595 11 Method and apparatus for controlling ignition during engine startup
A method and apparatus are disclosed for controlling ignition timing during startup of a two-stroke internal combustion engine while avoiding ignition timing errors caused by engine speed fluctuations. A rotational component of the engine, such as a flywheel, bears a plurality of spaced indicator markers including a plurality of ignition triggering markers, each of which designates a position on the rotational component that is acceptable for triggering ignition in a respective cylinder of the engine. Ignition in each cylinder is triggered upon detecting the associated ignition triggering marker and without taking engine velocity into account. Ignition timing errors that could otherwise be introduced due to erroneous assumptions based on engine speed therefore are avoided. In order to optimize performance and reduce emissions after engine startup, the engine preferably incorporates measures to determine when a calculated engine velocity exceeds a threshold engine velocity and to change over to an ignition control scheme that takes calculated engine velocity into account after the calculated engine velocity exceeds the threshold engine velocity. The threshold engine velocity preferably is one that at least approaches a minimum idle speed of the engine. In the case of a 95-135 hp V-4 engine, the threshold velocity preferably is on the order 300 rpm to 400 rpm. The method is particularly beneficial in engines having less than six cylinders because those engines exhibit the most dramatic pressure and speed fluctuations during engine startup.
6513495 10 Device for suppressing engine knocking in an internal combustion engine
A device for suppressing engine knocks in an internal combustion engine, using a detection device for the detection of the respective operating parameters of the internal combustion engine; a control unit for determining manipulated variables for the injection and ignition on the basis of the acquired operating parameters; a dynamic phase detection device for acquiring a dynamic phase of the internal combustion engine; and a correction device for correcting the manipulated variables for the ignition, which is constructed so that for knock suppression, the ignition control quantity, given a dynamic phase acquired by the dynamic phase detection device, can be adjusted in the late direction by a dynamic lead that is dependent on a predicted load difference, and at the end of the dynamic phase can be brought step-by-step back to the manipulated variable determined by the control unit.
6516757 9 Internal combustion engine with a supercharger and an improved piston crank
A supercharged internal combustion engine is provided with a double-link type piston crank mechanism connecting between a piston and a crankshaft. The piston crank mechanism causes the piston to move at a speed which is smaller around a top dead center (TDC) and larger around a bottom dead center (BDC) as compared with respective corresponding piston speeds attained by a comparable single-link type piston crank mechanism. The double-link type piston crank mechanism variably controls a compression ratio by varying an angular position of one of links constituting the piston crank mechanism.
6516759 25 Valve timing control apparatus for internal combustion engine
A valve timing control apparatus for an internal combustion engine is capable of ensuring good response within a control range, stability outside the control range, and durability without increasing the capacity of electric power for a drive circuit and an OCV coil. The valve timing control apparatus includes an intake vale 31, an exhaust valve 32, an engine operating condition detecting section (3, 11, 14), a target valve timing calculating section 21, variable valve timing mechanisms 15, 16, an actual valve timing detecting section (14, 17, 18), a control amount calculating section 21 for calculating a control amount based on target valve timing, actual valve timing and engine operating conditions, and an actual valve timing control section (19, 20) for outputting the control amount as an output control amount to the variable valve timing mechanisms. When the target valve timing is outside a prescribed control range, the control amount calculated by the control amount calculating section 21 is not made as an output control amount supplied to the actual valve timing control section (19, 20).
6516760 15 Valves for i.c. engines with variable lifts and timings
A variable timing system for i.c. engines, especially for motor vehicles, with suction and/or exhaust valves provided with hydraulic tappets in which the position of the oil inlet passages within the chamber of the hydraulic tappet can be selectively regulated in such a manner as to appropriately vary the moment at which they become closed by the cup member of the tappet, thus either retarding or advancing the opening of the valve i.e. diminishing or increasing its lift continuously from zero to a maximum value.
6516772 30 Combustion state control system of internal combustion engine
In a direct injection spark ignition engine which is operable in lean-burn operation modes including a pre-mixture combustion mode and a stratified combustion operation mode and a stoichiometric air/fuel ratio operation mode, which are different in the desired air/fuel ratio. The degradation of combustion state is detected through misfire detection and if it is determined to be degraded, the desired air/fuel ratio, the EGR flow rate and the ignition timing are changed when the engine is operated in the stratified combustion operation mode, while the desired air/fuel ratio, the EGR flow rate and the purge flow rate are changed when the engine is operated in the pre-mixture combustion operation mode, thereby ensuring to suppress the combustion state degradation effectively.
6516774 10 Premixed charge compression ignition engine with variable speed SOC control
A novel and improved engine and method are provided which includes a premixed charge compression ignition engine capable of operating over a wide load range without the need to vary the IMT beyond easily achievable or desirable temperature levels. The engine and method adjust the start of combustion by adjusting the engine speed and torque while delivering a targeted engine horsepower output.
6516778 23 Engine airflow control
A method for controlling a powertrain of a vehicle adjusts a minimum allowed airflow based on operating conditions. Specifically, when conditions of engine speed and/or vehicle speed area away from idle conditions, no increasing of the minimum allowed airflow is carried out. However, when conditions of engine speed and/or vehicle speed area approaching idle conditions, the minimum allowed airflow is increased to the required airflow for those idle conditions.
6516782 9 System and method for controlling fuel injections
A method for controlling fuel delivery from a fuel injector includes determining a first desired engine torque output; determining engine speed; determining a first quantity of fuel to be delivered by the fuel injector based on the first desired engine torque output and the engine speed; determining an injection pressure; and determining a first amount of time for energizing the fuel injector in order to deliver the first quantity of fuel based on the injection pressure. For a system capable of split injection, the method further includes determining a second desired engine torque output; determining a second quantity of fuel to be delivered by the fuel injector based on the second desired engine torque output and the engine speed; and determining a second amount of time for energizing the fuel injector in order to deliver the second quantity of fuel. The method and system of the invention provide more precise control of fuel delivery compared with prior systems and methods.
6517394 15 Engine control system for watercraft
A small watercraft includes a hull, an internal combustion engine and an engine speed limiting arrangement. The hull defines an engine compartment in which the engine is supported. The engine speed limiting arrangement comprises an engine condition sensor and an electronic control unit that is operatively connected to the engine condition sensor. The engine speed limiting arrangement is configured to regulate the engine speed of the engine such that the engine speed remains between a maximum value above which the engine can be damaged and a minimum value below which the watercraft will no longer stay in a planing state. Methods for operating the engine speed limiting arrangement are also disclosed.
6517397 17 Air induction system for small watercraft
An induction system for a watercraft includes a first intake air chamber communicating with at least one combustion chamber of an engine of the watercraft, and a second intake air chamber communicating with the first intake air chamber via a conduit. The second intake air chamber may be arranged in various orientations and/or with various other features which improve attenuation of induction noises and/or the preclusion of water from entering the engine through the induction system.
6517464 18 Apparatus and method for determining a state of a power train
An apparatus and method determine a state of a power train that includes a power transmission apparatus that is configured to transmit power of a first driving power source to an input side of a second driving power source via a clutch and a transmission, and is capable of changing a torque capacity of the clutch and a gear ratio of the transmission. The apparatus and method determine a state of the clutch or the transmission based on a revolution speed of the first driving power source and information indicating a state of the second driving power source, e.g., a revolution speed of the input side of the second driving power source.
6517784 13 Exhaust gas purifying apparatus for an internal combustion engine
Exhaust gas from internal combustion engines is treated with catalyst comprising an inorganic oxide supporter which supports at least one of noble metals selected from Rh, Pt, and Pd, alkali rare earth metals, rare earth metals, and magnesium in order to remove NOx effectively with superior durability of the catalyst notwithstanding the internal combustion engine is under a stoichiometric operation condition or a lean burning operation condition.
6517785 13 System for exhaust gas purification
A system for exhaust gas purification disposed in the exhaust pipe of an internal combustion engine, includes (1) an adsorbent comprising a monolithic carrier and (2) an adsorbent component having a hydrocarbon adsorptivity, loaded on the carrier, and a catalyst comprising a monolithic carrier and a catalyst component loaded on the carrier, having a purifiability for the harmful substances present in the exhaust gas emitted from the engine. The catalyst is provided downstream of the adsorbent in the flow direction of the exhaust and it can remove the hydrocarbons generated during engine cold gas. The adsorbent has a sectional shape satisfying the following relation:1.2.ltoreq.(major axis)/(minor axis).ltoreq.6.5This system enables the desorption of hydrocarbons from the adsorbent in a longer time and can remove the hydrocarbon generated during engine cold start at a higher purification ratio.
6517899 50 Catalyst and adsorption compositions having adhesion characteristics
A composition and method for improving the adhesion properties of catalytic and adsorptive compositions to a substrate through the addition of clay and/or silicone binder is disclosed. Preferably, the composition includes manganese dioxide and attapulgite clay and/or a silicone polymer which is adhered to a metal substrate, such as a motor vehicle radiator.
6518213 12 Exhaust gas purifying catalyst and process for preparing the catalyst
An exhaust gas purifying catalyst comprises a hydrocarbon adsorbent layer and a metal-based catalyst layer on a monolithic support. The catalyst contains zeolite in the underlying hydrocarbon adsorbent layer and contains noble metals such as palladium, platinum, rhodium, etc. in the overlying metal-based catalyst layer. Also, both layers contain an alkaline metal, etc., and a weight ratio of the alkaline metal, etc. contained in the metal-based catalyst layer to the alkaline metal, etc. contained in the hydrocarbon adsorbent layer is set to 60:40 to 99:1. A process for preparing the above catalyst comprises forming the metal-based catalyst by coating slurry. The slurry contains water insoluble or water hardly-soluble alkaline metal and/or alkaline earth metal compound.
6519513 37 Hybrid vehicle control apparatus
A hybrid vehicle control apparatus which is capable of improving the deterioration of the emission performance unique to the hybrid vehicle during idle stop by purifying the exhaust gas remaining in the engine intake pipe, the cylinders, the exhaust pipe and the catalyst. The apparatus comprises two drive sources including an engine operated by fuel combustion and an electric motor/generator operated by electric energy. A residual exhaust gas purifier purifies the gas remaining in the intake pipe, the cylinders, the exhaust pipe and the catalyst of the engine.
6519554 14 Computer implemented system and method for evaluating gas generator
A computer-implemented system and method for evaluating gas generator launchers is provided. The method includes fixing the system geometry and establishing initial conditions of the launcher to be evaluated. The initial conditions include a mass, composition and geometry of the fuel included in the gas generant, geometries of the system components, initial pressures and temperatures and the mass and geometry of the device to be launched. A gas generator internal ballistics burn rate is modeled and an amount of mass and energy added to the combustion chamber as the fuel is consumed is calculated. Then, using conservation of mass and energy principles, an energy flux rate is modeled, beginning with the fuel and ending with the work performed on the device in order to propel it from the launcher. The modeling method is performed using a computer-based gas generator launcher simulation system, which includes a means for inputting gas generator launcher geometries and initial conditions, a launcher simulator program in computer memory for resolving gas and device dynamic equations to integrate a solution from said initial conditions to the end of a launch cycle, and a display means for displaying the integrated solution.
6519930 10 Method and configuration for monitoring an NOx-storage device
A method and a configuration are provided for monitoring a regeneratable NO.sub.x -storage device in an exhaust gas line, in particular of a Diesel or a lean-burn engine, through which an NO.sub.x -containing gas flows. A temperature measurement is carried out in the exhaust gas line and the operability, operating condition and/or storage capacity of the NO.sub.x -storage device is inferred from the temperature measurement.
6519931 28 Direct gasoline injection type spark igniting internal combustion engine
In a direct gasoline injection type spark igniting internal combustion engine provided with a turbocharger and a catalyst, in order to optimize an exhaust gas control, the structure is made such that an optimum exhaust gas control can be obtained only by one control valve by designing an arrangement of a pre catalyst, the turbocharger and a bypass exhaust gas passage and placing a control valve. Further, a stratified operation area is expanded by reducing a capacity of the turbocharger, shifting an actuation area to a low capacity side and corresponding to an area of a stratified combustion so as to increase an air amount in the stratified area. Accordingly, since it is possible to early warm up a main catalyst at a time of starting the engine, whereby the exhaust gas is purified, and the air amount in the stratified area is increased, the stratified area expands to a high output side and a fuel consumption is improved.
6519932 21 Exhaust gas purification apparatus and method for an internal combustion
In order to suppress the quantity of the nitrogen oxide to be released to the atmosphere when the operation state is shifted from the engine operation with lean air fuel ratio to that with stoichiometric air fuel ratio, the exhaust gas purification apparatus is arranged such that by forced rich operation, when the operation state is shifted from the engine operation with lean air fuel ratio to that with stoichiometric air fuel ratio, the operation state is shifted to the engine operation with stoichiometric air fuel ratio after performing that with rich air fuel ratio.
6519933 38 Internal combustion engine having variable valve control system and NOx
An apparatus is provided which includes an internal combustion engine of a lean-burn type, an NOx catalyst disposed in an exhaust passage of the engine so as to remove nitrogen oxides contained in exhaust gas emitted from the engine, and a variable valve control system capable of changing at least one of the opening and closing timing and a lift of the intake valve and/or the exhaust valve for each cylinder of the engine. The variable valve control system is controlled so that the exhaust gas to which the NOx catalyst is exposed is controlled so as to be suitable for removing a selected gaseous component from the NOx catalyst when the selected gaseous component should be removed. A method of purifying an exhaust gas emitted from the above engine is also provided.
6519934 9 Emission control method and apparatus of an internal combustion engine
A method and apparatus control an emission of an internal combustion engine. The emission control of the internal combustion engine has a three-way catalyst and a NOx storage-reduction catalyst in an exhaust passage. The emission control reduces NOx stored in the catalyst to recover its NOx storing capability by performing a rich spike control during a lean burn operation. The emission control apparatus has an electronic control unit that limits the execution time of the rich spike control and, after the elapse of the limited execution time, performs a stoichiometric burn operation. The emission control prevents prolongation of the rich spike control and thereby prevents deterioration of HC and CO emissions. By performing the stoichiometric burn operation after the elapse of the limited time of the rich spike control, the emission control apparatus recovers the NOx storing capability while avoiding deterioration of HC and CO emissions.
6520001 12 Apparatus and method for the determination of the relative proportions of
The present invention relates to a method of determining the relative proportions of gases in a mixture, such that the relative proportions of N gases are determined using N-1 sensors, not all of which are specific to a particular gas. In the preferred embodiment, oxygen and carbon dioxide are measured in the presence of nitrogen by measuring magnetic susceptibility and speed of sound. The described method of gas analysis leads to very fast response times and exceptional stability, making the technology suitable for breath-by-breath analysis of respired air. Notably, the method does not require high-temperature components, electrochemical cells, or consumable components.
6520009 18 Air flow rate measuring apparatus
An air flow rate measuring apparatus generates a flow rate signal with a nonlinear characteristic from a flow rate detecting unit provided with a heat generating resistor and converts that into a signal with a linear characteristic by a linearizing circuit. Then, the flow rate signal is smoothed by a filter circuit to obtain a signal in which the measurement error due to a flow rate ripple is suppressed. Thereafter, the flow rate signal is again formed into a signal with a nonlinear characteristic by a nonlinear-form converting circuit to suppress resolution lowering due to analog-to-digital conversion.
6520127 16 Portable, internal combustion-engined tool and method of driving its piston
A method of driving a piston (80 of a portable, internal combustion, engine tool by combusting a combustible gas mixture in a combustion chamber (1) having a combustion chamber wall (14) located opposite the piston (8), the method including dividing the combustion chamber (1) in at least two chamber sections (21, 22) by providing, between the combustion chamber wall (14) and the piston (8), a separation plate (18) having a plurality of through-openings (38) and separately adjusting the combustible gas mixture in each chamber section (21, 22).
6520128 12 Piston valve for two-stroke engine
A two-stroke engine has a piston operatively connected to a crankshaft for reciprocating motion within a cylinder. An annular piston valve is mounted for slidable motion with respect to a centrally located inner body of the piston to control a flow of cycle air through the piston. A cycle air intake opening is located in a wall of the cylinder at a location above a bottom dead center position of the piston. The cycle air intake is blocked and unblocked by the reciprocating motion of the piston. A transition member located between the crankcase and the cylinder has a bore for sealingly receiving the straight body section of the connecting rod.
6520131 28 Valve timing control system for internal combustion engine
A valve timing control system for accelerating activation of a catalytic converter in an internal combustion engine in a cold starting operation mode while enhancing control accuracy by learning a reference position of a cam angle. The system includes actuators (15; 16) coupled to cam shafts (15C; 16C), respectively, hydraulic pressure supply means (19; 20) for driving the actuators (15; 16), and a controller (21A) for controlling hydraulic pressure fed to the actuators (15; 16) in dependence on engine operation states to change phases of the cam shafts (15C; 16C) relative to a crank shaft (13C). The controller (21A) is so designed as to set a valve timing to a most advanced position or alternatively to a most retarded position in a cold-state idling operation mode for the purpose of learning a reference position.
6520136 33 Warm-up control device for internal-combustion engine and warm-up control
A warm-up control device for an internal-combustion engine comprises a heat storage device for storing a heating medium heated during operation of the engine, supplies the heating medium stored in the heat storage device to a drive device (a transmission and the like) prior to the start of the engine or:at the start of the engine, and supplies the heating medium stored in the heat storage device to the drive device while maintaining a condition where the heating medium is circulated in the path excluding the heat storage device and including the drive device after the start of the engine.The warm-up control device supplies the heating medium heat-insulated and stored in the heat storage device during operation of the engine, and sets the ratio between the amount of the heating medium supplied from the heat storage device to the and the amount of the heating medium supplied from the heat storage device to the drive device, on the basis of the temperature of the engine and the temperature of the drive device.At the start of the internal-combustion engine, the heating medium can be supplied to the engine or the drive device efficiently, and the warm-up can be performed as required.
6520142 21 Engine control system for controlling in-cylinder fuel injection engine
In order to provide a system that lower NOx emission and an improved fuel consumption are obtained by making the igniting control possible in the wide operation range by performing the fuel injection and the ultra lean burning with the homogeneous air-fuel mixture, in the engine having the compression igniting mode, in the in-cylinder fuel injection engine having the compression igniting mode, means for performing the first fuel injection for the initial combustion speed control before igniting and the second fuel injection for the engine torque control after that, are provided. The second fuel injection ratio for the engine torque control is increased according to the engine torque. Furthermore, in order to improve the igniting, the igniting trigger means is provided in the in-cylinder fuel injection engine having a compression igniting mode and the igniting trigger is added by the igniting trigger means after the first fuel injection.
6520143 8 Preinjection valve for controlling the fuel inflow of a fuel injection
A preinjection valve with a valve body, in which an inlet conduit is embodied which can be filled with fuel at high pressure via a high-pressure pump. An outlet conduit is embodied in the valve body and discharges laterally into the inlet conduit and communicates with a fuel injection valve via a high-pressure line. A preinjection valve member is guided sealingly in the inlet conduit and is moved counter to a closing force by the fuel pressure in the inlet conduit and after executing a preinjection stroke (h.sub.v) comes to rest on a deflection valve member guided, likewise sealingly, in the inlet conduit. By the motion of the preinjection valve member, a preinjection quantity is pumped into the outlet conduit and delivered to the fuel injection valve. When a main injection pressure in the inlet conduit is attained, the deflection valve member is moved by the fuel pressure until, on traversing an opening stroke (h.sub.0), the communication from the inlet conduit into the outlet conduit is opened, and fuel can flow to the fuel injection valve.
6520144 53 Cylinder injection type internal combustion engine, control method for
There is provided a cylinder injection type internal combustion engine capable of performing stratified charge operation at the time of a vehicle speed of 120 km/h and/or an engine rotational speed of 3200 rpm to enhance the fuel efficiency and/or to observe the emission regulations. In the internal combustion engine, a stratum of air and/or air flow is formed between a fuel spray injected from an injection valve and the top face of a piston and/or the wall surface of a combustion chamber, and a face shape contrived to guide the air flow is formed on the top face of the piston.Also, the stratified charge operation can be performed even at the time of cold start or cranking.
6520148 13 Throttle control apparatus and method for direct-fuel-injection-type
A direct-fuel-injection-type internal combustion engine is equipped with an injector for injecting fuel directly into a combustion chamber of a cylinder. A controller controls the degree of opening of a throttle valve for adjusting the amount of air drawn into the combustion chamber and sets the throttle valve to a closed valve state by setting the degree of opening of the throttle valve to a degree of opening that is on the closed valve side of a post-engine start target degree of opening, when the engine is to be started. After it is determined that a start of the engine has been accomplished, the controller opens the throttle valve by gradually increasing the degree of opening of the throttle valve from the degree of opening of the closed valve state to the post-engine start target degree of opening.
6520149 7 Knock control apparatus and method for engines
A knock control apparatus has a knock sensor and a signal processor. The signal processor integrates a knock sensor signal and differentiates the integrated signal. The signal processor detects a period in which the differentiated signal exceeds a threshold, and detects a peak of the differentiated signal. The signal processor then calculates a ratio between the detected signal generation period and the detected peak to determine a knock when the calculated ratio is within a predetermined range. Alternatively, the signal processor detects a peak generation time and calculates a ratio between the detected signal generation period and the detected peak generation time. In this instance, the signal processor determines the knock when the calculated ratio is within a predetermined range and the detected peak generation time is less than a predetermined time reference.
6520150 15 Fuel injector assembly and internal combustion engine including same
A fuel injector assembly is provided which includes a pressurization control valve assembly and a timing control valve assembly. A pressure actuated needle valve is positioned between the pressurization and timing control valves. Pressure within the injector is controlled by opening and closing such valve assemblies. In particular, when the pressurization control valve assembly is open and the timing control valve is closed there will be pressure equilibrium within the injector and a spring will hold the needle valve closed. When the pressurization and timing control valves are both closed, fuel in the injector will be pressurized. Upon opening the timing control valve assembly, there will be a net upward force which will open the needle valve. Closing of the timing control valve assembly will create a net downward force closing the needle valve.
6520160 17 Internal combustion engine control unit for, and method of controlling a
An internal combustion engine control unit for hybrid vehicle makes an electric motor function as a main driving source for the vehicle under a predetermined condition and at the same time, controls a hybrid mechanism so as to warm up the internal combustion engine. If a requested engine output to the internal combustion engine exceeds a predetermined output or if an accelerator opening degree exceeds a predetermined opening degree, the same control unit changes the operating condition of the internal combustion engine from the warm-up operation condition to an operation condition fitting to the requested engine output.
6520165 12 Nozzle for emitting nitrous oxide for fuel to engines
A nozzle (7) for a nitrous oxide system for an internal combustion engine contains outlet (9), to produce a high velocity cylindrical stream of nitrous oxide (9') expressed in a certain direction (29) and another outlet (11), located on the same side of the nozzle, such as a slot, to produce a thin fan shaped mist of fuel (11') expressed in a second direction (31) from another location with the directions being inclined at an acute angle (.alpha.) relative to one another, preferably forty-five degrees. The spray of fuel and stream of nitrous oxide collide at a location (D1, 18) displaced from the side of the nozzle, wherein the high velocity stream of nitrous oxide further atomizes the fuel and mixes therewith as injected into the intake of the engine.
6520167 18 Engine for a marine vehicle
An engine for a marine vehicle includes a controller having a predetermined map defining a relationship between a fuel injection parameter and an engine operation characteristic. Additionally, the controller includes at least one compensation factor for adjusting the fuel injection parameter. The compensation value is derived from data recorded during a test of the engine. The compensation factor is used during the normal operation of the engine to achieve a predetermined air/fuel ratio.
6520286 58 Silencer and a method of operating a vehicle
A device for silencing a flow includes at least one acoustic chamber through-flowed by gas, e.g., exhaust gas, at least one inlet pipe and at least one pipe or passage interconnecting two chambers or a chamber and an exterior environment or chamber and is designed with such cross-sectional area transitions, between passages and the chambers that the sound attenuation achieved by the device is high while the pressure drop across the silencer is low and that high attenuation at low characteristic frequencies of flow systems are obtained. The device may contain at least one of diffusers, monolithic bodies and catalysts. The passages may be curved or helical so as to allow for a low natural frequency. Embodiments with resonance chambers attenuating at selected frequencies are disclosed. A method for operating a vehicle including a combustion engine and a silencing system is disclosed. The engine may be a spark ignited combustion engine or a gas turbine engine, and the method may include controlling at least one of fuel injection, excess air ration and spark timing, or adjusting vane guides in a turbine or a turbo charger.
6520433 8 Fuel injection valve
A fuel injection valve is capable of minimizing the waste of fuel and variations in the air-fuel ratio by weakening a water hammer action occurring as a result of sudden closing of a needle valve and thus suppressing the occurrence of a bouncing phenomenon. A water hammer absorbing member is provided between an armature and an injection hole to absorb and damp a water hammer pressure wave produced by sudden closing of the needle valve. Therefore, it is possible to reduce the pressure wave propagated to the armature, to which the needle valve is integrally secured, and hence possible to reduce the amount of lift of the needle valve due to a bouncing phenomenon. Accordingly, the amount of fuel excessively discharged is reduced. Thus, it becomes possible to minimize the waste of fuel and variations in the air-fuel ratio.
6520879 20 Power transmission apparatus and four wheel drive equipped with the same
A power outputting apparatus is provided with an engine, a clutch motor connected to a crank shaft thereof, and an assist motor connected to the crank shaft or a drive shaft by a switch apparatus. At a time of moving a vehicle backward, an operation characteristic of the engine is set to a characteristic on a low torque side in place of a characteristic at a time of moving forward (a characteristic giving priority to an efficiency). In addition, a torque Tm larger than an engine torque Te and in a reverse direction is output from the assist motor. As a result, a high torque is output to the drive shaft while an electric power is regenerated by the clutch motor, whereby the vehicle can be backward moved.
6520889 13 Adaptive engine control for shifting to neutral
A method/system for adaptively controlling engine fueling during disengagement of a jaw clutch (70) while maintaining the vehicle master friction clutch (20) engaged. Engine torque is initially commanded to a zero drive line torque value (114) and, after a period of time (T.sub.2 -T.sub.1) if non-torque lock is sensed ((d/dt(SL.sub.Y-Y))<REF), than a torque bump (128) engine fueling routine is initiated.
6522024 28 Output state detector for internal combustion engine
An output state detecting apparatus is arranged to detect a reaction torque of a motor and detect an output state of an internal-combustion engine from the reaction torque. The apparatus comprises an internal-combustion engine, a generator driven by the internal-combustion engine to generate electric power, torque detecting means for detecting a reaction torque of this generator, and output state detecting means for detecting an output state of the internal-combustion engine. The output state detecting means detects the output state of the internal-combustion engine, based on the reaction torque of the motor detected by the torque detecting means.
6522994 49 Input/loss method for determining fuel flow, chemistry, heating value and
The operation of a fossil-fueled thermal system is quantified by obtaining a reference fuel chemistry before on-line operation, and thereafter operating on-line. In on-line operation, a set of measurable operating parameters is measured, including at least effluent concentrations of O.sub.2 and CO.sub.2, and optionally the concentration of effluent H.sub.2 O and the concentration of effluent SO.sub.2. An indicated Air/Fuel ratio is obtained, as are the ambient concentration of O.sub.2, and air pre-heater leakage and dilution factors. The fuel ash and fuel water are calculated, and the complete As-Fired fuel chemistry is calculated. From the complete As-Fired fuel chemistry, the pertinent systems parameters such as reference fuel heating value, boiler efficiency, system efficiency, fuel flow rate, total effluent flow rate, individual effluent flow rates, and individual emission rates are determined in a fully consistent manner. The Method has been reduced to software which is fully benchmarked and operational.
6523341 7 Cold start vehicle catalyst monitor
Method and apparatus for monitoring a catalytic converter (32) during engine (catalyst) warm-up by first and second heated exhaust gas oxygen sensors (60, 70) located upstream and downstream, respectively, of the catalytic converter. A microprocessor determines a change of signal output of the downstream sensor relative to signal output of the upstream sensor during engine (catalyst) warm-up initiated by engine cold starting during the catalyst warm-up period. A catalyst light-off temperature is determined by the microprocessor when the change occurs. The catalyst light-off temperature thus determined is compared to a stored reference catalyst light-off temperature that is indicative of a properly functioning (e.g. fresh) catalyst to assess the extent or degree of degradation of the catalyst.
6523503 10 Method for providing and maintaining catalytically active surface internal
A catalytically active surface is provided on the clean, combustion-exposed parts of an internal combustion engine that is green, has low operating hours, or is of modern, low emission design. A substrate or thermal barrier coat of high surface area and preferably capable of maintaining a surface temperature of at least 450.degree. C. is deposited in the combustion chamber. Zirconia, silica, or lube oil ash are suitable. A catalytically active moiety such as platinum or iron is dispersed in, on, or with the combustion facing surface of the substrate. Nanophase iron from ferrocene or nanophase platinum are suitable. Catalytic action is maintained by continuously providing a low level of catalytic precursor to the engine in the combustion charge.
6523504 14 Control system for controlling variable valve type internal combustion
A control system for an engine comprises an operation range judging section that judges an operation range assumed by the engine, a variable cycle operating section that switches the operation of the engine between 4-cycle operation and a different cycle operation in accordance with a judgment made by the operation range judging section, the different cycle operation being of an operation whose cycle is different from 4-cycle, and an intermediate variable cycle operating section that allows part of the cylinders to carry out 4-cycle operation and remaining part of the cylinders to carry out the different cycle operation when the operation range judging section judges that the engine is under an intermediate operation range assumed between an operation range provided by 4-cycle operation and an operation range provided by the different cycle operation.
6523512 10 Control unit for adjusting the angle of rotation of a camshaft
An angle of rotation of a camshaft relative to an angle of rotation of a crankshaft in internal combustion engines is adjusted for influencing the control times of a valve operation sequence. A wobble plate mechanism including a wobble drive realizes the adjustment. The wobble plate mechanism is arranged between camshaft and crankshaft, preferably between camshaft and a camshaft wheel.
6523530 6 Valve apparatus and method for injecting nitrous oxide into a combustion
An improved injection valve apparatus for variably controlling the injection of nitrous oxide and supplemental fuel into a combustion engine, and method for controlling and varying the amounts of nitrous oxide and supplemental fuel injected into a combustion engine based on existing engine conditions. In the method, engine parameters are programmed for the timing and volume of nitrous oxide injected into an engine. The engine performance and engines conditions are continuously monitored. The amount of nitrous oxide injected into the engine, and additional fuel supplied into the engine in response to changing engine condition are adjusted.
6523531 19 Feed forward method for canister purge compensation within engine air/fuel
A method for air/fuel operation of an engine. The engine is supplied fuel from both a fuel purging system to purge fuel in a fuel supply and feed such purged fuel to an intake manifold of the engine and a fuel injection system to inject fuel from such fuel supply into a cylinder of such engine. The method includes producing a first air/fuel ratio control signal in accordance with measured exhaust gas oxygen emission from the engine; producing a second air/fuel ratio control signal in accordance with fuel transport delay through the fuel purging system; combining the first and second air/fuel ratio control signals into a composite control signal; and feeding such composite control signal to the fuel injection system. Producing the first air/fuel ratio control signal comprises determining fuel flow rate through the purge system. The purge system includes a valve, such valve passing the fuel in the purging system to the intake manifold at a rate relate to a duty cycle of a control signal fed to such valve and wherein the flow rate is determined in response to the duty cycle the control signal fed to the valve. The purge system includes a hydrocarbon sensor responsive to fuel in the purging system and wherein the first air/fuel ratio control signal is produced in accordance with an output of such sensor. The method includes determining a species of hydrocarbon in the fuel being purged and adjusting the first air/fuel ratio control signal in accordance with the determined species. The species determination comprises determining from the exhaust gas oxygen a deviation of the engine emissions from stoichiometry. The method includes providing a model of the engine. The model represents a relationship between: (1) a signal model LAMBSE, representative of estimated air/fuel ratio of the engine relative to a stoichiometric air/fuel ratio for the engine; and, (2) fuel injected into the cylinder of the engine. Exhaust gas oxygen emission from the engine is measured during operation of such engine. Actual LAMBSE produced by such engine during operation of such engine is produced as a function of such measured oxygen. The actual LAMBSE is compared with the model LAMBSE provided by the model in response to fuel injected into the engine to produce a model error signal. The fuel injected into the engine is adjusted in accordance with the error signal.
6550797 32 Zero roll suspension system
A zero roll suspension system for a vehicle that includes a vehicle frame and a wheel assembly has an axis of rotation. The present system preferably includes first and second crossing members, each of which has a first end and a second end. One of the first and second ends of each of the first and second crossing members is adapted to be mated to a portion of the wheel assembly. The other of the first and second ends of each of the first and second crossing members is adapted to be mated to the vehicle frame. The first and second crossing members are oriented so as to cross one another in superposition along a crossing axis while each crossing a longitudinal centerline of the vehicle.
6575126 25 Solenoid actuated engine valve for an internal combustion engine
A valve assembly includes a valve housing, an engine valve having a valve stem, an armature, and two solenoids. The valve housing has a first end and an opposing second end. The valve stem is located within the valve housing. The engine valve is moveable between an open position and a closed position. The armature is coupled to the valve stem. The armature is moveable between a first and second positions. The first solenoid is adjacent the first end of the valve housing and is operable to move the armature to the first position and the engine valve to the closed position in response to a first digital pulse. The second solenoid is adjacent the second end of the valve housing and is operable to move the armature to the second position and the engine valve to the open position in response to a second digital pulse.
6615645 11 System and method for generating a knock determination window for an ion
An ignition apparatus including a primary and a secondary winding for producing a spark voltage, an ion current detection circuit for producing an ion current signal, a slope detector and a knock detector. The slope detector determines when the ion current signal exhibits a slope indicative of a time period when knock is likely to occur, and de-asserts a knock reset signal. The knock reset signal holds the knock detector in reset, thus disallowing or masking the processing of signals by the knock detector that may be mistaken for knock.
6741080 7 Buffered ion sense current source in an ignition coil
In an ignition coil assembly of an ion sensing ignition system having an ignition coil output, a buffered ion-sense current source circuit is provided and includes a current sensing circuit, the current sensing circuit being disposed so as to be communicated with the ignition coil output and an active current source circuit, the active current source circuit being disposed so as to be communicated with the current sensing circuit and a current measuring device.
6813932 13 Misfire detection device for internal combustion engine
A misfire detecting device for an internal combustion engine including an ion current detecting means for detecting ion currents generated between electrodes of spark plugs; an ion current judging means for judging whether or not the ion current exists at each ignition cycle based on the ion current signal; a misfire judging means judging when no ion current is judged to exist based on an ion current judgment signal; an ignition coil; an ignition coil signal judging means for judging whether or not the ignition coil signal generated in synchronism with an ignition timing exists; and a failure judging means for judging whether or not an failure of the ion current detecting means occurs based on a result from the ignition coil signal judging means when the ion current signal is not detected.

New, User-Downloaded Patents

Patent No.PgsTitle
5197448 9 Dual energy ignition system
An ignition system for hydrocarbon based fuels employing two energy sources, one to create a spark, and the other to sustain an arc. The ignition circuit is based in part on the principle of a strobe light circuit. The circuit increases ignition efficiency by increasing the power dissipated at the spark gap, particularly when used in conjunction with a surface gap spark plug. Maximum power transfer is achieved via impedance matching of the ignition system to a surface gap spark plug. The circuit is particularly appropriate for igniting extremely lean mixtures, highly diluted mixtures, and alternative fuels.
5452603 17 Method for detecting lean limit by means of ionic current in an internal
An object of the invention is to detect an upper limit of a lean burn zone in an internal combustion engine in each ignition. The lean limit is detected on the basis of the characteristics of the ionic current in a cylinder of the engine immediately after ignition.
5866808 13 Apparatus for detecting condition of burning in internal combustion
An apparatus for detecting a condition of burning in an internal combustion engine includes a spark plug and an ignition coil. The ignition coil has a primary winding and a secondary winding. The secondary winding is connected to the spark plug. An ion current sensing resistor is connected to a low voltage side of the secondary winding of the ignition coil for sensing an ion current. A diode is connected in parallel with the primary winding of the ignition coil. A switching element is connected in series with the primary winding of the ignition coil. The switching element is movable into and out of an on state. A suitable device is operative for resisting a current flowing through the diode when the switching element is in the on state.
6089077
DE69809345T2
19 Mass fraction burned and pressure estimation through spark plug ion
(Die "DE" Zahl ist auf Deutsch.)
Mass fraction burned in a cylinder of an internal combustion engine is determined by measuring an ion signal across a gap of a spark plug and identifying an inflection point of the ion signal. The mass fraction burned is determined using an expression that includes a constant. A value for the constant is determined using the inflection point of the ion signal, and the mass fraction burned is determined using the expression and the constant.
6216530 9 Combustion state detecting device for an internal combustion engine
A combustion state detecting device for an internal combustion engine is obtained which is capable of preventing noises from being superimposed on an ion current, and surely obtaining a desired peak value of the ion current. The combustion state detecting device for the internal combustion engine includes an ignition coil which develops an ignition high voltage, an ignition plug to which the ignition high voltage is applied through a high-voltage path connected to a plurality of output terminals of the ignition coil, bias means for charging a bias voltage necessary for detecting ions which are discharged and generated from the ignition plug, discharge current limiting means for discharging the bias voltage, ion current detecting means for detecting the discharge of the bias voltage as an ion current that flows through the ignition plug, and an ECU for detecting a combustion state in the ignition plug on the basis of a detection value of the ion current, wherein the discharge current limiting means is disposed between an ignition current path formed by discharging the ions from the ignition plug and the bias means.
6263727 7 Make voltage bias ion sense misfired detection system
An apparatus for detecting a combustion condition such as misfire in an internal combustion engine. During an initial charging operation, a make voltage is developed across a secondary winding of the ignition coil, and thence across the electrodes of a spark plug. After combustion, the ignition coil is recharged to thereby again develop the make voltage across the secondary winding to bias the spark plug. The make voltage provides the bias across the spark plug electrodes to cause an ion current flow if combustion has in-fact occurred. The ion current is sensed with a sensing resistor.
6360587 7 Pre-ignition detector
An apparatus for detecting a pre-ignition combustion condition in an internal combustion engine. An ion sensing circuit measures an ion current during the ignition coil charging time. An ion current level above a predetermined reference level indicates pre-ignition combustion. A powertrain control module is responsive to a pre-ignition signal for discontinuing delivery of fuel to the cylinder in which the ion current was measured.
6498490 7 Ion sense ignition bias circuit
Disclosed is a bias and measuring circuit that improves the ion sense measurement and ignition performance of an Ion Sense Ignition system where the ion current signal processing is implemented remote from the ignition coil. Specifically, the bias and measuring circuit of the invention reduces the effects of secondary harness capacitance on the ion current signal, minimizes the effects of harness electrical leakage and reduces the chances for "spark-on-make" (an ignition firing when the ignition coil primary is initially energized).
6615811 18 Ignition coil integrated ion sense with combustion and knock outputs
An ignition coil having ion sense capability with combustion and knock outputs features improved determination of when to open and close a combustion window during which a combustion signal indicative of the level of combustion is calculated. The system also includes a knock window during which a knock signal indicative of the level of knock is determined. A PWM combustion signal is multiplexed on the same physical line as a current flag signal, and, a PWM knock intensity signal is multiplexed on the same physical line as a knock window signal, which reduces system connections. Closed loop multicharge ignition is provided with combustion detection during multicharging to ensure the availability of knock detection, thereby providing a longer effective spark burn time while still allowing for knock detection.
6772720 21 Valve timing control device for internal combustion engine
A valve timing control device for an internal combustion engine, in which upon cold start, combustion gas containing quench hydrocarbons and wet fuel is confined in a combustion chamber by advancing an exhaust valve close timing. This combustion gas is richer in hydrocarbons and wet fuel than is the gas produced after the engine has been warmed up. When the pressure in an intake line becomes lower than 600 mmHg, the exhaust valve close timing is retarded so as to recirculate post-combustion gas back to the combustion chamber. Then the unburned hydrocarbons in the post-combustion gas are involved in combustion again and their emission is reduced. Such gas recirculation and confinement to the combustion chamber are switched in accordance with a target valve underlap corresponding to the intake line pressure in the internal combustion engine.
5014676 9 Ignition system with repetitive sparks
A repetitive spark distributorless ignition system stops ignition current before the complete discharge of magnetic energy in the ignition coil supplying the spark plug. The ignition coil is then recharged so an additional spark can be applied to the spark plug.
4648367 8 Method and apparatus for detecting ion current in an internal combustion
The invention relates to a method for detecting ion current in an ignition circuit included in the ignition system of an internal combustion engine, where a measuring voltage is applied to the ignition circuit and a measuring device is utilized for detecting ion current possibly present in the ignition circuit. In known solutions of this kind, it has been necessary to use comparatively expensive electronic components, usually not manufactured as standard, to protect the outside voltage source from high voltages occurring in the ignition circuit. The problems are aggravated when the prior art is applied to capacitive ignition systems. The present invention solves the problems involved in an advantageous manner and is essentially distinguished in that a constant measuring voltage is applied to the grounded connection of the ignition circuit between a secondary winding of the ignition circuit and a capacitor in the ground connection, and in that a possible ion current in the ignition circuit is detected in means, by a signal representing the ion current being taken off from the ground connection of the secondary winding.
4862093 6 Method and an arrangement for the detection of ionizing current in the
The invention relates to a method and an arrangement for detecting ionizing current in an ignition circuit incorporated in the ignition system of an internal combustion engine, in which a measuring voltage is applied to the ignition circuit in at least one secondary winding, and in which a measuring device is used to detect the possible presence of an ionizing current in the ignition circuit. A low measuring voltage is applied during an engine start sequence, or alternatively, no measuring voltage at all, and a high measuring voltage is applied subsequent to the engine start. The invention thereby overcomes the problem existing when measuring ionizing currents of the spark plugs becoming coated with soot deposits as a result of the electrical voltage field which always exists between the electrodes of respective plugs. Such problem is particularly troublesome during an engine start sequence, since the deposits can prevent the engine from starting.
5293129 12 Ionic current sensing apparatus for engine spark plug with negative
A direct current power supply applies a positive voltage between the center electrode and the ground electrode of a spark plug in an internal combustion engine after discharge of the spark plug. Ionic current flowing between the electrodes due to the positive voltage is measured by a current sensor. The ionic current caused by the positive voltage is due to electrons, so it has a large magnitude and can be easily measured.
4481929 18 Method and device for atmospheric pressure-dependent correction of
A method comprising correcting the air/fuel ratio of a mixture being supplied to an internal combustion engine, by the use of a correction coefficient determined as a function of detected values of atmospheric absolute pressure and intake pipe absolute pressure. A device is also provided, which includes means for arithmetically calculating the correction coefficient as a function of outputs of sensors for sensing the two kinds of absolute pressure or means storing predetermined values of the correction coefficient for selective reading as a function of the sensor outputs, and means for correcting the valve opening period of a fuel injection valve by the calculated or read coefficient value.
4590563 11 Method and apparatus for controlling internal combustion engine
A single pressure sensor is provided to measure the air pressure in the intake manifold of a fuel injection engine. An electronic control unit having a microcomputer is provided to control the fuel amount and ignition timing in accordance with various engine parameters including the engine rotational speed and the intake pressure. The intake pressure is first measured before the engine is started so that the data of this pressure can be used as data indicative of atmospheric pressure. During operation of the engine, the pressure data may be used as normal intake pressure data. However, when the engine operates at a low speed and under high load, the pressure data is used as data indicative of the atmospheric pressure with slight correction. The amount of fuel to be injected and ignition timing thus controlled with updated data of atmospheric pressure, and therefore, undesirable phenomena, which are apt to occur when an engine is operated at a high altitude place, are effectively prevented, resulting in desired air/fuel ratio and ignition timing.
4708115 8 Method of correcting air-fuel ratio for atmospheric pressure in internal
An amount of fuel to be supplied to an internal combustion engine is determined in dependence upon operating conditions of the engine and is corrected by a correction variable dependent upon atmospheric pressure. The correction variable is set so as to increase with a decrease in atmospheric pressure, and the set value of the correction variable is modified so as to decrease with a rise in the engine rotational speed. The correction variable resulting from this modification is added to the amount of fuel to be supplied to the engine to correct the same.
4351306 9 Electronic ignition system
The values of dwell and ignition timing signals from which ignition dwell and spark timing are provided are controlled to minimize power dissipation in an electronic ignition system and to ensure that adequate dwell times are provided during engine acceleration conditions and large advance angle increases. The dwell signal is increased from a static dwell value during steady state engine operation to a higher value in response to sensed engine accelerating conditions and the change in the spark advance between ignition events is limited to ensure that an adequate dwell period is provided.
4317437 19 Internal combustion engine ignition system
An internal combustion engine ignition system comprising the combination of an electronic data processor unit that is adapted to calculate an ignition spark event engine crankshaft angle, an associated electronic control unit, and a source of alternating current timing signals. The electronic control unit is responsive to the alternating current timing signals to produce an engine crankshaft position reference signal that is supplied as an input engine crankshaft position reference signal to the data processor unit and also is capable of effecting ignition spark in response to the alternating current timing signals during periods of engine crank and during periods of data processor unit malfunction.
4002155 19 Engine and engine spark timing control with knock limiting etc.
In a spark ignition internal combustion engine, an accelerometer is mounted on an engine component, preferably the intake manifold, and senses vibration including individual ringing vibrations due to engine knock or detonation. A reference signal is derived from the accelerometer signal during the portion of the engine cycle prior to possible knock-induced vibrations, which signal indicates the background accelerations due to noise. The number of individual ringing vibrations exceeding the reference signal during a predetermined amount of engine crankshaft rotation is counted. When the number of such counts exceeds a predetermined number during the predetermined crankshaft rotation, engine spark timing is retarded. If the number of such counts is less than a predetermined number during the predetermined crankshaft rotation, engine spark is advanced.
4245601 14 Internal combustion engine speed ignition spark advance system
In an internal combustion engine electronic ignition system of the type responsive to each of a series of alternating current timing signals of an amplitude directly proportional to engine speed that are induced in the output coil of an electrical generator assembly having at least a rotor member rotated in timed relationship with the engine, the timing signals are overriden by the output signal of a circuit combination that is responsive to a potential level of a predetermined magnitude across the electrical generator assembly output coil to provide an engine speed ignition spark advance within increasing engine speeds greater than a selected value that substantially follows a desired engine speed ignition spark advance curve.
5819713 20 Automotive ignition control system
An automotive ignition control system includes a vehicle control computer operable to provide electronic spark timing (EST) signals, a control circuit having a number of coil drive circuits connected thereto, a corresponding number of coil driver devices connected to respective ones of the coil drive circuits and a corresponding number of ignition coils connected to respective ones of the coil driver devices. The control circuit is responsive to an active state of any one of the EST signals to activate a corresponding one of the coil driver devices while inhibiting activation of all others. If any EST signal remains in an active state for an excessive time period, the control circuit is operable to lock-out the corresponding coil driver device from operation until such a fault condition is cleared. The control circuit is preferably operable to accomplish the lock-out function by gradually decreasing the coil current associated with the faulty EST signal in a fashion that does not generate a spark event.
4909225 14 Multi-fuel engine control with fuel transition delay
A fuel control for an engine using a liquid mixture of two fuels, such as gasoline and methanol, having different volumetric heat contents is responsive to a fuel compostion sensor to update a stored engine fuel control parameter. When a significant change in fuel composition is sensed, the stored engine fuel control parameter is not updated for a fuel transition time duration to allow the unchanged fuel still in the conduit between the sensor and engine to be used with the unchanged stored engine fuel control parameter.
4644474 8 Hybrid airflow measurement
The amount of air entering an engine is determined by selecting the more accurate of two airflow determination means. One means measures a parameter characterizing airflow into the engine and has an adaptive correction. Another means calculates airflow into the engine as a function of engine speed and air density and has an adaptive correction.
4502325 5 Measurement of mass airflow into an engine
To measure the mass airflow into an engine having a manifold with a given volume, the mass airflow through an induction passage into the manifold is measured by a meter and the measured value is changed by an amount to compensate for changes of air density in the manifold. The manifold pressure and temperature are monitored and the correction value is calculated as where V is the manifold volume, R is a gas constant, T is the temperature and P is the air pressure in the manifold.
4437340 7 Adaptive air flow meter offset control
This invention adapts stored engine control parameters to variations in the air and fuel supply systems to improve open loop air fuel ratio control. An offset amount is calculated which is to be added to measured air flow in an internal combustion engine capable of operating in an open loop mode and a closed loop mode. In the method, an engine operating condition in a closed loop mode at idle is established. The current average fuel control signal is calculated. The current average fuel control signal is compared to a previous average open loop fuel control signal to obtain a difference average fuel control signal. An offset control signal is generated as a function of the difference average fuel control signal and is to be added to all future air flow measurements thereby providing for adaptive correction and more accurate air fuel ratio control in the open loop mode.
5651353 11 Internal combustion engine control
Internal combustion engine air/fuel ratio control provides for individual engine cylinder air/fuel ratio balancing through sensing of individual cylinder air/fuel ratio and through comparison of sensed individual cylinder air/fuel ratio to a target air/fuel ratio with air/fuel ratio control command correction prescribed on a cylinder-by-cylinder basis. The target air/fuel ratio may be determined as an overall average cylinder actual air/fuel ratio. An additional control loop is provided for driving a value representing overall engine air/fuel ratio toward a desired air/fuel ratio, such as the stoichiometric ratio. Correction values are learned gradually for each engine cylinder and stored and recalled as a function of an engine operating level.
4977873 11 Timing chamber ignition method and apparatus
A method and apparatus for timed ignition of a fuel-air mixture in internal combustion engines, incorporated therein or as a replacement unit therefor, providing an ignition chamber open into the combustion chamber, there being a catalytic igniter positioned in the ignition chamber to contact a pressure front of said fuel-air mixture penetrating the ignition chamber during the compression cycle and ignited thereby to effect the power cycle.
5109817 10 Catalytic-compression timed ignition
A catalytic prereaction timing ignition method and igniter unit for timed ignition of a fuel-air mixture in internal combustion engines providing an ignition chamber open into the combustion chamber of the engine, there being a catalytic igniter positioned in the ignition chamber to intercept a pressure front of stratified fuel-air mixture penetrating a prechamber timing zone of the ignition chamber and controlled by the spring rate of burnt gasses captured in a buffer zone of the ignition chamber during the compression cycle and ignited by the pressure front touching the igniter to effect the power stroke of the engine.
5297518 9 Mass controlled compression timed ignition method and igniter
A method and apparatus for compression timed ignition in internal combustion engines, the varying mass of the fuel-air mixture having controlling effect to retard timing by cooling a heater element to vary the current therethrough, and characterized by an igniter with a pre-chamber in communication with the engine combustion chamber via at least one and preferably a multiplicity of radiating ports for projecting burning plasma into the engine combustion chamber.
5421299 10 Compression timed pre-chamber flame distributing igniter for internal
A method and apparatus for compression timed ignition in internal combustion engines, the varying mass of the fuel-air mixture having controlling effect to retard timing by cooling a heater element to vary the current therethrough, and characterized by an igniter with a pre-chamber in communication with the engine combustion chamber via a restricted nozzle area for projecting burning plasma at high velocity into the engine combustion chamber.
4384473 11 Engine knock control with detector and filter
A spark ignited internal combustion engine includes apparatus effective to generate a signal from knock-induced and other ringing vibration bursts with amplification over a wide passband around the characteristic knock frequency. The signal is demodulated to obtain the envelope pulses of the knock and other vibration bursts and filtered in a low pass filter having a half power frequency from 60-200 Hertz. The output of this filter, in which other pulses are significantly attenuated with respect to knock pulses, is further processed to obtain a knock control signal which controls spark retard apparatus to limit knock intensity.
4111035 9 Engine knock signal generating apparatus with noise channel inhibiting
A vibration sensor mounted on an internal combustion engine characterized by knock-induced vibrations at a characteristic frequency and by other vibrations is tuned to resonate at substantially the characteristic frequency. A bandpass filter tuned to the characteristic frequency is connected to the vibration sensor output; and the output of the filter is provided to one input of a comparator and to average detector circuitry for generating a unidirectional noise reference signal representing noise at the characteristic frequency, which signal is provided to the other input of the comparator. The knock signal, obtained from the output of the comparator and comprising pulses corresponding to knock-induced peaks of amplitude greater than the unidirectional noise reference signal, is fed back through a low-pass filter to the average detector circuitry in sense to oppose increases in the unidirectional noise reference signal during said knock-induced peaks. The connection of the average detector circuitry to the output of the bandpass filter provides adaptability for mistuned sensors; and the negative feedback to the average detector circuitry reduces the distorting effect, amplified by the bandpass filter, of said knock-induced peaks on the unidirectional noise reference signal, which might otherwise distort the output knock signal.
4106447 13 Engine spark timing system with retard means and minimum burn timer
In a spark timing system for a spark ignited internal combustion engine, means are provided for generating a series of alternating coil-on and coil-off signals in accordance with crankshaft rotation and one or more engine operating conditions, means are provided for normally passing each coil-on signal immediately to the spark coil to turn on current therethrough and means are provided for passing each coil-off signal to the spark coil to turn off current therethrough with a retard determined in accordance with an additional engine operating condition to generate a spark pulse retarded with respect to the normal spark timing. To ensure a minimum burn time for the spark plugs, means are provided to hold the spark coil in the off condition for a predetermined minimum burn time following each retarded coil-off signal, regardless of the possible appearance of a coil-on signal before the end of this minimum burn time.
5213178 13 Traction control system with fuel and spark control
The torque reduction of an internal combustion engine in response to an excessive acceleration spin condition is provided by a combination of disabling selected engine cylinders and spark retard. When a reduction of engine torque output is required in response to an excessive acceleration spin condition of the vehicle, the first level of torque reduction is provided at a level less than the torque reduction resulting from disabling a single cylinder of the engine by retarding the spark timing of the spark ignition in the cylinders. The amount of the retard of spark timing is such that the resulting torque reduction is less than the torque reduction resulting from disabling a single cylinder of the engine.
4191146 5 Means for optimizing fuel economy in an internal combustion engine
A self-adaptive system for optimizing ignition timing in an internal combustion engine wherein a signal representing engine manifold absolute pressure is multiplied by a signal representing engine speed to provide a product signal. The product signal is differentiated and applied as the numerator in a divider. The quotient output of the divider is fed back to the divider input as the denominator. The quotient output of the divider is further integrated and the integrated quotient is used as a command signal for setting the spark timing.

Other Interesting Patents

Here are some of the patents on which my grandfather is listed as principal inventor. My favorite is the continous graphitizer, 2621218, I have some pictures of the prototype somewhere around here. If you have any titanium parts on your car or in your arms/legs/head, you can thank my grandfather that they didn't cost 10 times as much, all due to his processes for purification.

Patent No.PgsTitle
2621218 4 Electric Graphitizing Furnace
3000705 5 Preparation of Boron Trichloride
3265492 4 Method of Utilizing Electrolytic Cell Sludge by Recovering Calcium Metal Therefrom
3673076 4 Filter Press Fluorine Cell with Carbon Connectors
4116801 13 Apparatus for Electrowinning Multivalent Metals
4118291 13 Method of Electrowinning Titanium
4165262 11 Method of Electrowinning Titanium
4167468 12 Apparatus for Electrowinning Multivalent Metals

Handwriting on the back of this photo: "Jim Wall with Paul Juckniess's first Continuous Graphitizer. Located by #1 furnace in 302 Bldg. Jan 10, 1950." What do you think OSHA would say if they found a place like that today?

 
Not2Fast hosted by TrackFiends